期刊论文详细信息
JOURNAL OF COMBINATORIAL THEORY SERIES A 卷:117
Equations resolving a conjecture of Rado on partition regularity
Article
Alexeev, Boris1  Tsimerman, Jacob1 
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
关键词: Colorings;    Partition regularity;    Ramsey theory;   
DOI  :  10.1016/j.jcta.2009.02.009
来源: Elsevier
PDF
【 摘 要 】

A linear equation L is called k-regular if every k-coloring of the positive integers contains a monochromatic solution to L. Richard Rado conjectured that for every positive integer k, there exists a linear equation that is (k - 1)-regular but not k-regular. We prove this conjecture by showing that the equation Sigma(k-1)(i=1) 2(i)/2(i)-1x(i) = (-1+Sigma(k-1)(i=1) 2(i)/2(i)-1)x(0) has this property. This conjecture is part of problem E14 in Richard K. Guy's book Unsolved Problems in Number Theory, where it is attributed to Rado's 1933 thesis, Studien zur Kombinatorik. (C) 2009 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcta_2009_02_009.pdf 102KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次