期刊论文详细信息
JOURNAL OF COMBINATORIAL THEORY SERIES A 卷:180
Rado's theorem for rings and modules
Article
Byszewski, Jakub1  Krawczyk, Elzbieta1 
[1] Jagiellonian Univ, Fac Math & Comp Sci, Inst Math, Lojasiewicza 6, PL-30348 Krakow, Poland
关键词: Partition regularity;    Ramsey theory;    Rado's theorem;   
DOI  :  10.1016/j.jcta.2021.105402
来源: Elsevier
PDF
【 摘 要 】

We extend classical results of Rado on partition regularity of systems of linear equations with integer coefficients to the case when the coefficient ring is either an arbitrary integral domain or a noetherian ring. In particular, we show that a system of homogeneous linear equations over an infinite integral domain is partition regular if and only if the corresponding matrix satisfies the columns conditions. The crucial idea is to study partition regularity for general modules rather than only for rings. Contrary to previous techniques, our approach is independent of the characteristic of the coefficient ring. (C) 2021 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcta_2021_105402.pdf 547KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次