期刊论文详细信息
JOURNAL OF COMBINATORIAL THEORY SERIES A 卷:158
Monochromatic solutions to systems of exponential equations
Article
关键词: Ramsey theory;    Arithmetic Ramsey theory;    Ramsey theory on the integers;    Partition regular patterns;    Structure of finite partitions;    Rado's theorem;    Van der Waerden's theorem;   
DOI  :  10.1016/j.jcta.2018.04.002
来源: Elsevier
PDF
【 摘 要 】

Let n is an element of N, R be a binary relation on [n], and C-1(i, j), . . . , C-n(i, j) is an element of Z, for i, j is an element of [n]. We define the exponential system of equations epsilon(R, (C-k(i, j)(i,) (j,) (k)) to be the system X-iY1C1(i,X- j) . . .YnCn(i,X- j) = Xj ,X- for (i,X- j) is an element of R,X- in variables X-1, . . . , X-n , Y-1, . . . ,Y-n . The aim of this paper is to classify precisely which of these systems admit a monochromatic solution (X-i , Y-i not equal 1) in an arbitrary finite colouring of the natural numbers. This result could be viewed as an analogue of Rado's theorem for exponential patterns. (C) 2018 Published by Elsevier Inc.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcta_2018_04_002.pdf 340KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次