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Let n ∈ N, R be a binary relation on [n], and C1(i, j), . . . ,
Cn(i, j) ∈ Z, for i, j ∈ [n]. We define the exponential system 
of equations E(R, (Ck(i, j)i,j,k) to be the system

X
Y

C1(i,j)
1 ···Y Cn(i,j)

n
i = Xj , for (i, j) ∈ R,

in variables X1, . . . , Xn, Y1, . . . , Yn. The aim of this paper 
is to classify precisely which of these systems admit a 
monochromatic solution (Xi, Yi �= 1) in an arbitrary finite 
colouring of the natural numbers. This result could be viewed 
as an analogue of Rado’s theorem for exponential patterns.

© 2018 Published by Elsevier Inc.

1. Introduction

In 2011, Sisto [16] made the surprising observation that an arbitrary 2-colouring of the 
natural numbers admits infinitely many integers a, b > 1 such that a, b, ab all receive the 
same colour. He went on to ask if a similar result holds for k-colourings of the natural 
numbers with k > 2. Brown [3], simplifying and extending the proof of Sisto, gave 
further examples of exponential, monochromatic patterns that are present in an arbitrary 
2-colouring and also proved some weaker results for monochromatic patterns in more 
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colours. In a recent paper [15] we answered Sisto’s question by showing that any finite
colouring of the positive integers admits a, b > 1 such that {a, b, ab} is monochromatic 
and went on to develop, in this context, a theory of patterns defined by compositions 
of the exponential function. In the present paper we turn from the study of patterns 
arising as compositions of the exponential function, to understand exponential patterns 
that arise as solutions to systems of equations. There is a vast literature on finding 
patterns in arbitrary finite partitions of the integers, [1,2,4–9,12,17,13,19] and we refer 
the reader to the introduction in [15] for a brief discussion of this theory or to [6] for a 
indepth survey of the most classical elements of the theory.

The motivation for the study of monochromatic solutions to equations lies in the 
seminal work of Rado [14], who classified the systems of homogeneous linear equations 
that admit a solution in an arbitrary finite colouring of the natural numbers. More 
precisely, we say that an m ×n matrix A is partition regular if every finite colouring of N
admits monochromatic x1, . . . , xn ∈ N, for which Ax = 0, where x = (x1, . . . , xn). Rado 
classified the partition regular matrices by giving a simple criterion on the columns of 
such matrices. It is in this spirit that the present paper sets out.

It is worth pointing out that, even in the classical, linear theory, there is a distinction 
between studying patters which solve linear systems and patterns which arise as fixed 
linear compositions of several free variables. These two types of partition regularity are 
sometimes termed “kernel partition regular” and “image partition regular”, respectively. 
So, while Rado’s theorem gave a complete understanding of what linear systems Ax = 0
can be solved in an arbitrary colouring, it was not until the work Hindman and Leader 
[11] that a classification of “image” partition regular systems was fully understood. We 
refer the reader to the survey of Hindman [10], for details.

Before going further, let us lay out some basic terminology. Let k ∈ N and X be a 
non-empty set. We call a function f : N → X a finite colouring if X is finite, and a 
k-colouring, if |X| ≤ k. As is standard, we refer to the elements of X as colours. We say 
that a collection A, of ordered tuples of integers, is partition regular if for every finite 
colouring f : N → X we can find n ∈ N and x1, . . . , xn ∈ N, such that f(x1) = · · · = f(xn)
and (x1, . . . , xn) ∈ A. We say that a linear system of equations is partition regular if its 
solution set in N is partition regular. We say that an exponential system of equations is 
partition regular if its solution set in N \{1} is partition regular. That is, for exponential 
equations, we only consider solutions where each coordinate at least 2, to remove the 
trivial cases. It shall also be convenient to define the binary operation � as a � b = ab, 
for a, b ∈ N.

For n ∈ N, let R be a binary relation on [n]. Given integers C1(i, j), . . . , Cn(i, j) ∈ Z, 
for i, j ∈ [n], we define the system of equations E (R, {Ck(i, j)}i,j,k) by

X
Y

C1(i,j)
1 ···Y Cn(i,j)

n
i = Xj , for (i, j) ∈ R, (1)

where X1, . . . , Xn, Y1, . . . , Yn are variables.
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Our main result will tell us that the above system of equations has a monochro-
matic solution in every finite colouring of N if and only if an associated system of linear
equations in the variables Y1, . . . , Yn has a solution. As Rado’s theorem gives a nice clas-
sification of partition regular linear equations, Theorem 1, when used in tandem with 
Rado’s theorem, yields an effective method for determining if a given exponential system 
is partition regular.

To define the associated linear system, L (R, {Ck(i, j)}i,j,k), we treat R as a directed 
graph D = ([n], R) and let L (R, {Ck(i, j)}i,j,k) be the system of equations, indexed by 
the (not necessarily directed) cycles C of D,

∑
e∈C

(−1)d(e) (C1(e)Y1 + . . . + Cn(e)Yn) = 0, (2)

where, for each cycle C, we fix some orientation and then define d(e) = 0 if the edge e
is oriented in the same way as the cycle and d(e) = 1 if the orientation of the edge and 
the cycle are different.

For example, the exponential system XY
1 = X2, XY

2 = X3, XY
3 = X4, X4 = XZW

1 , 
has as its associated linear system the single equation 3y−z−w = 0. Note that it is also 
important that we include loops as cycles. For example, the one-equation exponential 
system XY1 = XY2Y3 has associated linear system x − y1 − y2 = 0. We may now state 
our main theorem.

Theorem 1. For n ∈ N, let R ⊆ [n] × [n], and Ck(i, j) ∈ Z, for each i, j, k ∈ [n]. 
The system of exponential equations E (R, {Ck(i, j)}) is partition regular if and only if 
L (R, {Ck(i, j)}) is partition regular.

So, for example, we deduce that the equation

XY1·Y2 = XY3·Y4 ,

is partition regular as the associated linear system y1 + y2 − y3 − y4 = 0 is partition 
regular. Sisto’s original question can also be neatly written in this form: he asked if the 
equation XY = Z is partition regular. This question is immediately answered by this 
result as its associated linear system is empty, as there are no cycles in the corresponding 
directed graph, and therefore is trivially partition regular.

On the other hand, the exponential equation

XY 2
= XZ

is not partition regular as the associated linear system consists of the single equation 
z − 2y = 0, which is not partition regular.

For a more complicated example, we see that the exponential system

XY1
1 = X2, XY2

2 = X3, XY3
3 = X

Y 2
4

1 , XY2
1 = XY4

1 ,
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is partition regular as its associated linear system is

y1 + y2 + y3 − 2y4 = 0, y2 − y4 = 0,

which is seen to be partition regular by Rado’s theorem (discussed in Section 2). On the 
other hand, the system

XY
1 = X2, XY

2 = X3, XY
3 = X4, X4 = XZW

1 ,

is not partition regular as its associated linear system 3y − z − w = 0 is not partition 
regular, again by Rado’s Theorem.

Another illustrative example is perhaps most naturally expressed in a “compositional” 
form: For every finite colouring of N, one can find a, b, c > 1 so that {a, b, c, bc, ab, ac, abc}
is monochromatic. This follows from the fact that the system XY1

1 = X2, XY2
1 = X3, 

XY1Y2
1 = XY3

1 is partition regular, which again can be checked easily by applying Theo-
rem 1 and considering its associated linear system.

To understand where the relationship arises, between the exponential system E and 
its associated linear system L, it is most natural to start by considering the “only if” 
implication in Theorem 1. Let us first apply the function ν ◦ ν to both sides of the 
equations in the exponential system E , where ν is an appropriate logarithm-type function; 
that is, a function satisfying ν(ab) = bν(a). If we then sum these equations over “cycles”, 
we eliminate the terms of the form ν2(Xi) and obtain a system of the general shape 
of L. From here it is not hard to see that if c is a colouring forbidding a monochromatic 
solution to L, then c(ν(x)) is a colouring forbidding a solution to the original, exponential 
equation. Theorem 1 tells us that this restriction is in fact the only restriction to partition 
regularity of these systems.

To prove the “if” direction of the theorem, we show that if A ⊆ Nn is partition regular 
we can “lift” A to find an associated exponential pattern that is also partition regular. 
More precisely, if n ∈ N, A ⊂ Nn, and W : Nn → N is an arbitrary “weight” function, we 
define the exponential A-pattern with weight W , as follows. For each (x1, . . . , xn) ∈ A, 
we include into the associated exponential pattern, the following (W (x1, . . . , xn) +
n + 1)-tuple consisting of the elements

a, bx1 , . . . , bxn ,

along with

ab
1
, ab

2
, . . . , ab

W (x1,...,xn)
,

for each a, b > 1. We show the following.

Theorem 2. Let n ∈ N, and W : Nn → N be a function. If A ⊆ Nn is partition regular, 
then the associated exponential A-pattern, with weight W , is also partition regular.
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In the next section, we quickly recall some of the theory relevant to this paper and 
introduce the central definitions. In Section 3, we prove Theorem 2. Finally, in Section 4, 
we use this result to deduce our classification theorem, Theorem 1.

2. Preliminaries

Although we do not use it directly in our arguments, it is useful to recall Rado’s 
classical theorem on partition regular systems of linear equations [14]. This is both for 
motivation and to apply to examples, as we have done in the introduction. For m, n ∈ N, 
we let A be a m ×n matrix with integer entries. We say that A is partition regular if the 
collection {x ∈ Nn : Ax = 0} is partition regular. If we let v1, . . . , vn ∈ Zm denote the 
column vectors of A, we say that A satisfies the columns property if one can partition 
[n] = S0 ∪ · · · ∪ Sd, for some d ∈ [0, n − 1], so that 

∑
j∈S0

vj = 0, while 
∑

j∈Si
vj , lies 

in the Q-linear span of the vectors of S0 ∪ · · · ∪ Si−1, for each i ∈ [n]. Rado’s theorem 
establishes that these two properties of A are equivalent.

Theorem 3. For m, n ∈ N, let A be an m × n matrix with integer entries. A is partition 
regular if and only if A has the columns property.

Although we shall not require them explicitly in the present paper, it is convenient 
to recall the Rado colourings. These colourings were introduced by Rado to demonstrate 
the non-partition regularity of matrices without the columns property [14] (see [6]). For 
a prime p and x ∈ N, we define the colouring cp : N → [p − 1] by defining cp(x) as the 
coefficient of pk in the base-p expansion of x, where k is the largest integer so that pk
divides x. Rado proved that if A fails to have the columns property then, for sufficiently 
large primes p, if x1, . . . , xn are integers such that cp(x1) = · · · = cp(xn) then Ax 	= 0, 
where x = (x1, . . . , xn).

Turning now to introduce some important notions, let f : N → [k] be a k-colouring 
and let fn : N → [k] be k-colourings, for n ∈ N. We say that the sequence {fn} converges 
to f and write fn → f if for every m ∈ N there exists some M ∈ N so that for all n ≥ M , 
fn(x) = f(x), for all x ∈ [m]. As expected, we also say that a sequence converges if there 
exists some f that the sequence converges to. The following basic fact on sequences of 
colourings f : N → [k] is often referred to as the compactness property.

Fact 4. Given a sequence of colourings fn : N → [k] there exists some f : N → [k] and a 
strictly increasing sequence {N(n)}n ⊆ N for which

fN(n) → f,

as n → ∞. �
We also make use of the following consequence of the compactness property. Given a 

partition regular collection A ⊆ Nn and a positive integer k, there exists a minimum in-
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teger P (A; k) such that every k-colouring of N admits a monochromatic (x1, . . . , xn) ∈ A
with x1, . . . , xn ≤ P (A; k).

We make considerable use of van der Waerden’s classical theorem [18], which states 
that for every k, l ∈ N, there exists a minimal integer Wk(l) such that every k-colouring 
of an arithmetic progression of length Wk(l) contains a monochromatic sub-progression 
of length l.

Now, for r ∈ N, let f1, . . . , fr : N → [k] be k-colourings. We call a sequence of colours 
c1, . . . , cr ∈ [k] large for f1, . . . , fr if for every M ∈ N we can find an arithmetic progres-
sion PM of length M , such that fi(PM ) = ci, for each i ∈ [r]. The following two facts 
now follow easily from van der Waerden’s theorem.

Corollary 5. If f is a finite colouring of N, there exists a colour that is large with respect 
to f . �
Lemma 6. For r ∈ N, let f1, . . . , fr, fr+1 : N → [k] be k-colourings. If c1, . . . , cr ∈ [k] is 
large with respect to f1, . . . , fr, then there exists a colour cr+1 ∈ [k] so that c1, . . . , cr+1
is large with respect to f1, . . . , fr+1.

Proof. Let M ∈ N be a parameter. Now use the fact that c1, . . . , cr is large for f1, . . . , fr
to find a progression PM of length Wk(M) so that fi(PM ) = {ci} for i ∈ [r]. Applying 
van der Waerdens’s theorem to the colouring fr+1, along the progression PM , we obtain 
a monochromatic progression P ′

M ⊆ PM of length M , for which fi(P ′
M ) = ci, for i ∈ [r]

and fr+1(P ′
M ) = c(M), for some c(M) ∈ [k]. To finish, apply the above for all choices 

of M ∈ N. There is some value of [k] that is attained infinitely often as a value of c(M). 
We set cr+1 to be this value. �
3. Lifting partition regular patterns

In this section we prove Theorem 2 on “lifting” partition regular patterns. The core of 
the proof is contained in the following lemma, which works by constructing, at each stage, 
a huge number of sequences which approximate some “idealized” colourings f̃1, . . . , f̃r. 
Each “idealized” colouring will then act as a mold to help us look for future sequences 
which, in turn, approximate a new idealized colouring f̃r+1. Assuming that we don’t find 
the appropriate pattern, we shall observe that the colouring along our new sequences 
becomes more and more restricted, until we obtain a contradiction.

Our proof here is infinitary however, it is possible to replace our infinitary arguments 
with finitary ones to obtain explicit bounds on the various quantities. However, this 
exchange would come at the cost of added clutter and difficulty for the reader.

Before we give the proof of our main lemma, we make two key definitions. For each 
positive integer d, we define the d-sequence to be the sequence of integers {2d2x}x. Given 
a colouring f : N → [k], we define the restriction of f to the d-sequence to be the colouring 
f(d; · ) : N → [k], with f(d; x) = f

(
2d2x), for x ∈ N.
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Lemma 7. For n ∈ N, let W : Nn → N be a function and let A ⊆ Nn be partition regular. 
Let r, k ∈ N and let f : N → [k] be a colouring that admits no monochromatic, exponential 
A-system with weight W . Then we can find colours c1, . . . , cr ∈ [k] and corresponding 
colourings f̃1, . . . , f̃r : N → [k] so that the following hold.

1. For each i ∈ [r] there exists a sequence of integers {di(n)}n so that

f(di(n); · ) → f̃i as n → ∞,

where, for each n ∈ N, f(di(n); · ) is the restriction of f to the di(n)-sequence;
2. The sequence of colours c1, . . . , cr is large with respect to f̃1, . . . , f̃r;
3. c1, . . . , cr are distinct.

Proof. We apply induction on r. For r = 1, choose d1(n) = 1 for all n ∈ N. Thus 
f(d1(n); ·) trivially converges to a k-colouring f̃1. Now, by the corollary to van der 
Waerden’s theorem above (Corollary 5), there exists c1 ∈ [k] that is large with respect 
to f̃1. This proves the base case of the induction.

For the inductive step, suppose that we have found colourings f̃1, . . . , f̃r−1 with asso-
ciated colours c1, . . . , cr−1 that satisfy the statement of the lemma. In what follows, we 
let M ∈ N be a parameter. Now since c1, . . . , cr−1 is large for f̃1, . . . , f̃r−1, we may find 
a progression

PM = {d(M)x + a(M) : x ∈ [M ]}

of length M with f̃i(PM ) = {ci}, for each i ∈ [r − 1]. Now let M ′ ∈ N be a (new) 
parameter and define

h(M ′) = max
{
W (x1, . . . , xn) : x1, . . . , xn ∈ [P (A; kM

′
)]
}
,

while recalling that P (A; k) is the smallest integer so that every k-colouring of N ad-
mits a monochromatic tuple x1, . . . , xn such that (x1, . . . , xn) ∈ A and x1, . . . , xn ≤
P (A; k). For each appropriate M, M ′, we consider numbers of the form 2d(M)x2y , 
where x ≤ P (A; kM ′) and y ≤ M ′. In particular, we define a colouring F =
FM,M ′ : [P (A; kM ′)] → [k]M ′ by

F (x) =
(
f
(
2d(M)x21

)
, f

(
2d(M)x22

)
, . . . , f

(
2d(M)x2M′))

and observe that F defines a kM
′-colouring of [P (A; kM ′)] and therefore we can find a set 

of positive integers x1 = x1(M, M ′), . . . , xn = xn(M, M ′), with (x1, . . . , xn) ∈ A, which 
is monochromatic with respect to the colouring F . We now show that the colouring f
along the sequence
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2d(M)x121
, . . . , 2d(M)x12M′

is rather constrained, provided M is sufficiently large compared to M ′.

Claim 8. If M ≥ 2M ′
h(M ′), then the colours

f
(
2d(M)x121

)
, . . . , f

(
2d(M)x12M′)

are distinct from the colours c1, . . . , cr−1.

Proof. We show that if just one of these elements is coloured by a colour of {c1, . . . , cr−1}, 
we can find a monochromatic exponential A-system, thus obtaining a contradiction. So, 
assume that there is an element 2d(M)x12y , with y ∈ [M ′], that receives colour cp, with 
p ∈ [r − 1]. By the definition of the x1, . . . , xn, it follows that all of the elements

2d(M)x12y

, 2d(M)x22y

, . . . , 2d(M)xn2y

receive colour cp.
Next, choose an integer N = N(M) to be large enough so that the colouring 

f(dp(N); ·) agrees with f̃p on every element of [maxPM ]. Such a choice of N exists, 
as we are granted f(dp(n); ·) → f̃p as n → ∞, by the induction hypothesis. As a result, 
we have that PM is coloured by f(dp(N); ·) exactly as it is coloured by f̃p.

We claim that (x1, . . . , xn), a = 2dp(N)2a(M) and b = 2d(M)2y define an expo-
nential A-system that is monochromatic in the colour cp. We already know that 
f(bx1) = · · · = f(bxn) = cp, so it only remains to check the colour of a � (bl), for 
each l ∈ [0, W (x1, . . . , xn)]. So fix l ∈ [0, W (x1, . . . , xn)] and write

f
(
ab

l
)

= f
(
2 �

(
dp(N)2a(M)+d(M)l2y

))
= f (dp(N); a(M) + d(M)l2y) .

Now since l2y ≤ W (x1, . . . , xn)2M ′ ≤ M , our choice of N allows us to conclude that the 
above is equal to

f̃p (a(M) + d(M)l2y) = cp,

where this last inequality holds as PM = {a(M) + d(M)x : x ∈ [M ]} is a progression 
with the property that f̃p(PM ) = cp, as we assumed above.

Hence we have found an exponential A-system, monochromatic in cp. This contradicts 
the assumption on f and completes the proof of the claim. �

So for each M ′ ∈ N, we set d′(M ′) = d 
(
2M ′

h(M ′)
)
· x1

(
2M ′

h(M ′),M ′
)

and apply 

the compactness property (i.e. Fact 4) to find a subsequence of the {d′(M ′)} for which 
the sequence of colourings (f(d′(M ′); ·))M ′∈N

converges. We take {dr(M)}M to be this 
subsequence and f̃r to be the corresponding limiting colouring, to satisfy Conclusion 1.
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Now note that we have c1, . . . , cr−1 /∈ f̃r(N), for if f̃r(x0) = ci for some x0 ∈ N and 
i ∈ [r − 1], it would follow, for sufficiently large M ′, that the integer

2 � (d′(M ′)2x0) = 2 �
(
d
(
2M

′
h(M ′)

)
· x1

(
2M

′
h(M ′),M ′

)
· 2x0

)
,

would receive the colour ci, which is in contradiction with Claim 8.
Finally, we choose the colour cr. This is easily done; since c1, . . . , cr−1 is large for 

f̃1, . . . , f̃r−1, by Lemma 6, we may find a colour cr ∈ [k] so that c1, . . . , cr is large with re-
spect to f̃1, . . . , f̃r. This satisfies Conclusion 2. To see that we have satisfied Conclusion 3, 
it is enough to note that cr must be distinct from c1, . . . , cr−1 as c1, . . . , cr−1 /∈ f̃r (N).

So we have constructed a sequence of integers {dr(M)} and a colour cr ∈ [k] \
{c1, . . . , cr−1} so that f(dr(M); ·) converges to a colouring f̃r with the property that 
c1, . . . , cr is large for f̃1, · · · , f̃r. With this we have satisfied Conclusions 1, 2 and 3
and thus we conclude the induction step. Thus we complete the proof of Lemma 7, by 
induction. �

We may now deduce Theorem 2 from Lemma 7.

Proof of Theorem 2. Let n ∈ N, W : Nn → N be a function and let A ⊆ Nn be a 
partition regular pattern. For a contradiction, suppose that f is a k-colouring of N for 
which there is no monochromatic exponential A-pattern, with weight W . Now apply 
Lemma 7 with the choice of r = k + 1 to find k + 1 distinct colours c1, . . . , ck+1 ∈ [k]. 
This is a contradiction. �
4. Proof of Theorem 1

We are now in a position to prove our classification of partition regular, exponential 
systems. Recall that a binary relation R comes implicitly in the definition of the systems 
L and R. In what follows, we regard this relation as a directed graph in the obvious 
way, thus allowing us to borrow from the terminology of directed graphs. Indeed, call 
a digraph weakly connected if the underlying, undirected graph is connected, and say 
that a subgraph of G is a weak component of G if this subgraph is a component in the 
underlying, undirected graph.

Proof of Theorem 1. For n ∈ N, R ⊆ [n]2, and Ck(i, j) ∈ Z, i, j, k ∈ [n], we consider the 
system of exponential equations E = E (R, {Ck(i, j)}), along with the associated linear 
system of equations L = L (R, {Ck(i, j)}).

Let us first assume that L is partition regular. We let A ⊆ Nn be the collection of 
positive-integer solutions to the system of equations L and we define the weight function 
W : Nn → N, by W (x1, . . . , xn) =

(∑
i,j,k |Ck(i, j)|

)∑n
i xi, for all x1, . . . , xn ∈ N.

Now, given a finite colouring f of the integers, apply Theorem 2 to find integers 
a, b > 1 and (z1, . . . , zn) ∈ A so that all of the integers
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a, bz1 , . . . , bzn , ab
1
, . . . , ab

W (z1,...,zn)

are given the same colour by f .
We define numbers x1, . . . , xn, y1, . . . , yn that will constitute a monochromatic solution 

to E . We start by selecting yi = bzi , for i ∈ [n].
Now, if x, y ∈ [n] are in the same weak component of R, and Px,y is a path between 

x and y we define

ω(Px,y) =
∑

e∈E(Px,y)

(−1)d(e) (C1(e)z1 + · · · + Cn(e)zn) .

We note that this definition does not depend on the choice of P . For if P ′ is another 
path from x to y we have

ω(Px,y) − ω(P ′
x,y) =

∑
e∈E(C)

(−1)d(e) (C1(e)z1 + · · · + Cn(e)zn) ,

where C is the closed walk formed by first traversing Px,y and then traversing P ′
x,y

backwards. We may then partition the edges of the closed walk C as a union of cycles 
C1, . . . , Cl, l ∈ N, and thus decompose the above sum as

=
l∑

i=1

∑
e∈E(Ci)

(−1)d(e) (C1(e)z1 + · · · + Cn(e)zn) ,

which is clearly 0, as z1, . . . , zn is a solution to L.
Hence it makes sense to define ω(x, y) = ω(Px,y), where Px,y is some path between x, y. 

Now define R′ to be a binary relation on [n], defined by (x, y) ∈ R′ if x, y are in the 
same weak component of R and ω(x, y) ≥ 0. Note that this relation is transitive: if 
ω(x, y) ≥ 0 and ω(y, z) ≥ 0 then there are paths Px,y, Py,z from x to y and y to z
with ω(Px,y), ω(P ′

x,y) ≥ 0. Therefore the path Px,z, formed by first traversing Px,y and 
then Py,z, satisfies ω(Px,z) = ω(Px,y) + ω(Py,z) ≥ 0. Thus, ω(x, z) ≥ 0.

From the above, we see that the relation R′ is transitive and compares every two 
elements of [n] that are in the same weak component of R. We may assume, without 
loss, that R has m ∈ [n] weak components and that 1, . . . , m are vertices from each of 
the m components (resp.) so that if x ∈ [m], we have that ω(x, y) ≥ 0, for each y which 
is in the same weak component as x. We define the auxiliary integers ki, i ∈ [n], by first 
putting k1 = · · · = km = 0 and then, for i > m, we set

ki = ω(j, i) ≥ 0,

where j ∈ [m] is a representative vertex from the weak component containing i.
We now define xi = ab

ki , for i ∈ [m]. Note that since ki ≥ 0, xi is an integer and 
certainly xi > 1. We also have that ki ≤ W (x1, . . . , xn), for each i ∈ [n] and therefore 
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all of our choices of the x1, . . . , xn, y1, . . . , yn receive the same colour from f . It only 
remains to check that they satisfy the system of equations E . To this end, we note that 
for (i, j) ∈ R, we have

kj − ki = C1((i, j))z1 + · · · + Cn((i, j))zn,

which follows from the “independence of path” argument above. So, finally, if e =
(i, j) ∈ R we have

xi �
(
y
C1(e)
1 · · · yCn(e)

n

)
= a � (b � (ki + C1(e)z1 + · · · + Cn(e)zn))

= a � (b � kj) = xj ,

as desired. This proves that the x1, . . . , xn, y1, . . . , yn indeed form a solution to E and 
thus we have shown that E is partition regular.

We now show that if L is not partition regular, then we may produce a colouring 
demonstrating that E is not partition regular. For x ∈ N, write x in its prime factorization 
x = pe11 · · · pekk and define the function ν by setting ν(1) = 0 and letting ν(x) = e1 +
· · · + ek, for x > 1. This function has three simple properties that shall be useful for us.

1. We have ν(x) = 0 if and only if x = 1;
2. ν(xy) = ν(x) + ν(y) and, in particular, ν(ab) = bν(a);
3. ν(x) takes integer values.

Now assume that L is not partition regular and let c be a finite colouring that forbids 
monochromatic solutions to L. We define a colouring f by

f(x) = c(ν(x)).

To see that this colouring has the required property, we would like to apply the function 
ν ◦ν to both sides of each of our equations in E . As we cannot do this directly, we rewrite 
our equations in the form

X
Y

C′(i,j)
1 ···Y C′(i,j)

n
i = X

Y
C′′(i,j)
1 ···Y C′′(i,j)

n
j , (3)

where C ′(i, j), C ′′(i, j) are non-negative integers, for all (i, j) ∈ R. We now apply the 
function ν2 = ν ◦ ν to both sizes of every equation at (3). Note that this is possible, as 
we are assuming that Xi, Yi > 1 and therefore we have that each side of the equation is 
a positive integer greater than 1 and thus ν ◦ ν is defined. After rearranging, we obtain

C1(e)ν(Y1) + · · · + Cn(e)ν(Yn) = ν2(Xj) − ν2(Xi),

for each e = (i, j) ∈ R.
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Now, given a cycle C of R, we may eliminate the ν2 terms by summing over the 
cycle C, multiplying by ±1 according to the orientation of each e ∈ C. We thus obtain 
the equation

∑
e∈C

(−1)d(e) (C1(e)ν(Y1) + · · · + Cn(e)ν(Yn)) = 0,

for each cycle C in R. Now, if y1, . . . , yn form a monochromatic solution to this rewritten 
system of equations, we have that f(y1) = · · · = f(yn) and therefore c(ν(y1)) = · · · =
c(ν(yn)). So if we put u1 = ν(y1), . . . , un = ν(yn), we see that u1, . . . , un satisfy the 
equation L and c(u1) = · · · = c(un). However, our choice of c forbids this situation. 
Therefore E is not partition regular. This completes the proof of Theorem 1. �
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