JOURNAL OF COMBINATORIAL THEORY SERIES A | 卷:119 |
Hermite normal forms and δ-vectors | |
Article | |
Hibi, Takayuki1  Higashitani, Akihiro1  Li, Nan2  | |
[1] Osaka Univ, Dept Pure & Appl Math, Grad Sch Informat Sci & Technol, Toyonaka, Osaka 5600043, Japan | |
[2] MIT, Dept Math, Cambridge, MA 02139 USA | |
关键词: Convex polytope; Ehrhart polynomial; delta-Vector; Hermite normal form; | |
DOI : 10.1016/j.jcta.2012.02.005 | |
来源: Elsevier | |
【 摘 要 】
Let delta(P) = (delta(0), delta(1), ... , delta(d)) be the delta-vector of an integral polytope P subset of R-N of dimension d. Following previous work on the characterization of delta-vectors with Sigma(d)(i=0) delta(i) <= 3, all the possible delta-vectors with Sigma(d)(i=0) delta(i) = 4 are classified by means of simplices. We obtain our results by considering-by means of Hermite normal forms of square matrices-the classification of integral simplices with a given delta-vector (delta(0), delta(1), ... , delta(d)), where Sigma(d)(i=0) delta(i) <= 4. (C) 2012 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jcta_2012_02_005.pdf | 228KB | download |