期刊论文详细信息
JOURNAL OF COMBINATORIAL THEORY SERIES A 卷:123
Cayley compositions, partitions, polytopes, and geometric bijections
Article
Konvalinka, Matjaz1  Pak, Igor2 
[1] Univ Ljubljana, Dept Math, Ljubljana, Slovenia
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
关键词: Cayley composition;    Integer partition;    Convex polytope;    Ehrhart polynomial;    Bijective proof;   
DOI  :  10.1016/j.jcta.2013.11.008
来源: Elsevier
PDF
【 摘 要 】

In 1857, Cayley showed that certain sequences, now called Cayley compositions, are equinumerous with certain partitions into powers of 2. In this paper we give a simple bijective proof of this result and a geometric generalization to equality of Ehrhart polynomials between two convex polytopes. We then apply our results to give a new proof of Braun's conjecture proved recently by the authors [15]. (C) 2013 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcta_2013_11_008.pdf 200KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次