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Let δ(P) = (δ0, δ1, . . . , δd) be the δ-vector of an integral polytope
P ⊂ RN of dimension d. Following previous work on the charac-
terization of δ-vectors with

∑d
i=0 δi � 3, all the possible δ-vectors

with
∑d

i=0 δi = 4 are classified by means of simplices. We obtain
our results by considering—by means of Hermite normal forms
of square matrices—the classification of integral simplices with
a given δ-vector (δ0, δ1, . . . , δd), where

∑d
i=0 δi � 4.

© 2012 Elsevier Inc. All rights reserved.

1. introduction

1.1. Background on δ-vectors

Let P ⊂ R
N be an integral polytope of dimension d and ∂P its boundary. Define the numerical

functions i(P,n) and i∗(P,n) by setting

i(P,n) = ∣∣nP ∩Z
N
∣∣ and i∗(P,n) = ∣∣n(P − ∂P) ∩Z

N
∣∣.

Here nP = {nα: α ∈ P} and |X | is the cardinality of a finite set X . The systematic study of i(P,n)

and i∗(P,n) originated in Ehrhart’s work [1] carried out around 1955. In this work Ehrhart established
the following fundamental properties: i(P,n) is a polynomial in n of degree d with i(P,0) = 1 which
satisfies the reciprocity law

i∗(P,n) = (−1)di(P,−n) (1.1)

for every integer n > 0. We say that i(P,n) is the Ehrhart polynomial of P . An introduction to Ehrhart
polynomials may be found in [8, pp. 235–241] and [2, Part II].
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We define the integer sequence δ0, δ1, δ2, . . . by

(1 − λ)d+1

(
1 +

∞∑
n=1

i(P,n)λn

)
=

∞∑
i=0

δiλ
i . (1.2)

In particular, δ0 = 1 and δ1 = |P ∩Z
N | − (d + 1). Thus, if δ1 = 0, then P is a simplex. The above facts

together with a well-known result on generating functions (see [8, Corollary 4.3.1]) guarantee that
δi = 0 for every i > d. We say that the sequence

δ(P) = (δ0, δ1, . . . , δd)

which appears in (1.2) is the δ-vector of P and that the polynomial

δP (t) = δ0 + δ1t + · · · + δdtd

is the δ-polynomial of P .
It follows from the reciprocity law (1.1) that

(1 − λ)d+1

( ∞∑
n=1

i∗(P,n)λn

)
=

d∑
i=0

δd−iλ
i+1.

In particular, δd = |(P−∂P)∩Z
N |. Each δi is nonnegative [9]. If δd �= 0, then δ1 � δi for every 1 � i < d,

see [3].
Let s = max{i: δi �= 0}. In [10] Stanley showed that

δ0 + δ1 + · · · + δi � δs + δs−1 + · · · + δs−i, 0 � i � �s/2	, (1.3)

by using Cohen–Macaulay rings. The inequalities

δd−1 + δd−2 + · · · + δd−i � δ2 + δ3 + · · · + δi + δi+1, 1 � i �
⌊
(d − 1)/2

⌋
(1.4)

appear in [3, Remark (1.4)].

1.2. Main result: characterization of δ-vectors with
∑d

i=0 δi = 4

One of the most fundamental problems of enumerative combinatorics is to find a combinatorial
characterization of all vectors that can be realized as the δ-vector of some integral polytope. For
example, restrictions like δ0 = 1, δi � 0, (1.3) and (1.4) are necessary conditions for a vector to be a
δ-vector of some integral polytope.

On the one hand, the complete classification of the δ-vectors for dimension 2 is essentially given
by Scott [7], while the case where the dimension is at least 3 is unknown. In [4], on the other hand,
the possible δ-vectors with

∑d
i=0 δi � 3 are completely classified by the inequalities (1.3) and (1.4).

Theorem 1.1. (See [4, Theorem 0.1].) Let d � 3. Given a sequence (δ0, δ1, . . . , δd) of nonnegative integers,
where δ0 = 1 and δ1 � δd, which satisfies

∑d
i=0 δi � 3, there exists an integral polytope P ⊂ R

d of dimension
d whose δ-vector coincides with (δ0, δ1, . . . , δd) if and only if (δ0, δ1, . . . , δd) satisfies all inequalities (1.3)
and (1.4).

However, Theorem 1.1 is not true for
∑d

i=0 δi = 4, see [4, Example 1.2]. In this paper, we will

give the complete classification of the possible δ-vectors with
∑d

i=0 δi = 4, see Theorem 5.1 below.

Moreover, similar to the case
∑d

i=0 δi � 3, it turns out that all the possible δ-vectors with
∑d

i=0 δi = 4

can be chosen to correspond to integral simplices. Such a result does not hold when
∑d

i=0 δi = 5, see
Remark 5.3.
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1.3. Approach: a classification of integral simplices with a given δ-vector

Let Z
d×d denote the set of d × d integral matrices. Recall that a matrix A ∈ Z

d×d is unimodular
if det(A) = ±1. Given integral polytopes P and Q in R

d of dimension d, we say that P and Q are
unimodularly equivalent if there exists a unimodular matrix U ∈ Z

d×d and an integral vector w such
that Q = fU (P) + w , where fU is the linear transformation in R

d defined by U , i.e., fU (v) = vU for
all v ∈ R

d . Clearly, if P and Q are unimodularly equivalent, then δ(P) = δ(Q). Conversely, given a
vector v ∈ Z

d+1
�0 , it is natural to ask for a description of all the integral polytopes P under unimodular

equivalence, such that δ(P) = v .
In this paper, we will focus on the above problem for simplices with one vertex at the origin. In

addition, we do not allow any shifts in the equivalence, i.e., integral polytopes P and Q of dimension
d are equivalent if there exists a unimodular matrix U , such that Q = fU (P). By considering the
δ-vectors of all the integral simplices up to this equivalence, whose normalized volumes are 4, we
obtain our main result, Theorem 5.1.

To discuss the representative under this equivalence of the integral simplices with one vertex at
the origin, we consider Hermite normal forms.

Let P ⊂ R
d be an integral simplex of dimension d with the vertices 0, v1, . . . , vd . Define M(P) ∈

Z
d×d to be the matrix with the row vectors v1, . . . , vd . Then we have the following connection be-

tween the matrix M(P) and the δ-vector of P : |det(M(P))| = ∑
i�0 δi . In this setting, P and P ′

are equivalent if and only if M(P) and M(P ′) have the same Hermite normal form. Here, the Her-
mite normal form of a nonsingular integral square matrix B is a unique nonnegative lower triangular
matrix A = (aij) ∈ Z

d×d
�0 such that A = BU for some unimodular matrix U ∈ Z

d×d and 0 � aij < aii

for all 1 � j < i, see [6, Chapter 4]. In other words, we can pick the Hermite normal form as the
representative in each equivalence class and study the following

Problem 1.2. Given a vector v ∈ Z
d+1
�0 , classify all possible d × d matrices A ∈ Z

d×d which are in

Hermite normal form with δ(P) = (δ0, δ1, . . . , δd) = v , where P ⊂ R
d is the integral simplex whose

vertices are the row vectors of A together with the origin in R
d .

1.4. Structure of this paper

In Section 2, we describe our approach to Problem 1.2. Concretely, we develop an algorithm to
compute the δ-vector for any Hermite normal form A, see Theorem 2.1. This in fact results in a new
way to compute the δ-vector for any integral simplex via its Hermite normal form. Our algorithm is
very efficient for simplices with small volumes and prime volumes.

Based on this algorithm, as a by-product, we derive some conditions for Hermite normal forms to
have “shifted symmetric” δ-vector, namely, δi = δd+1−i for 1 � i � d. We will discuss these conditions
for two classes of Hermite normal forms in Section 3.

In Section 4, we apply Theorem 2.1 and obtain a solution to Problem 1.2 when
∑d

i=0 δi � 4. Sec-

tion 4.1 is devoted to studying the case
∑d

i=0 δi = 2, Section 4.2 is
∑d

i=0 δi = 3 and Section 4.3 is∑d
i=0 δi = 4.
Finally, in Section 5, as our main result, we show that the inequalities (1.3) and (1.4) with an

additional condition will give all the possible δ-vectors with
∑d

i=0 δi = 4. In this case, all the δ-vectors
can be obtained by simplices, see Theorem 5.1.

2. An algorithm for the computation of the δ-vector of a simplex

In this section we introduce an algorithm for calculating the δ-vector of integral simplices arising
from Hermite normal forms.

Let M ∈ Z
d×d . We write P(M) for the integral simplex whose vertices are the row vectors of M

together with the origin in R
d . We will present an algorithm to compute the δ-vector of P(M). To

make the notation clear, we assume d = 3. The general case is completely analogous. Let A be the
Hermite normal form of M . We have that {P(M) ∩Z

d} is in bijection with {P(A) ∩Z
d}. By definition,
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A =
(a11 0 0

a21 a22 0
a31 a32 a33

)
,

where each aij is a nonnegative integer.
For a vector λ = (λ1, λ2, λ3), consider

b(λ) := (λ1, λ2, λ3)A = (a11λ1 + a21λ2 + a31λ3,a22λ2 + a32λ3,a33λ3).

Then it is clear that the set of interior points inside P(A) ((P(A) − ∂P(A)) ∩Z
3) is in bijection with

the set{
(λ1, λ2, λ3)

∣∣ λi > 0, λ1 + λ2 + λ3 < 1, b(λ) ∈ Z
3}.

We observe that for any n ∈ N, n(P(A) − ∂P(A)) ∩Z
3 is in bijection with{

(λ1, λ2, λ3)
∣∣ λi > 0, λ1 + λ2 + λ3 < n, b(λ) ∈ Z

3}.
We first consider all positive vectors λ satisfying b(λ) ∈ Z

3. By the lower triangularity of the Her-
mite normal form, we can start from the last coefficient of b(λ) and move forward. Let {r} denote the
fractional part of r. Then it is not hard to see that each vector λ has the following form:

λ3 = λ
k,k3
3 := k

a33
+ k3,

λ2 = λ
jk,k2
2 := j − {a32λ

k
3}

a22
+ k2

and

λ1 = λ
i jk,k1
1 := i − {a21λ

jk
2 + a31λ

k
3}

a11
+ k1

for some nonnegative integers k3,k2,k1, where k ∈ {1,2, . . . ,a33}, j ∈ {1,2, . . . ,a22}, i ∈ {1,2, . . . ,a11}
and λ

i jk
1 = λ

i jk,0
1 , λ

jk
2 = λ

jk,0
2 , λk

3 = λ
k,0
3 . We call all the vectors λ with the same index (i, j,k) the

congruence class of (i, j,k).
Now we consider the condition λ1 + λ2 + λ3 < n in the above bijection. As n increases, we wish to

know when it is the first time that a congruence class (i, j,k) produces interior points inside nP(A).
In other words, for a fixed (i, j,k) we want to find the smallest n such that λ1 + λ2 + λ3 < n with
λ1, λ2, λ3 > 0. It is clear that this happens when k1 = k2 = k3 = 0 and

n = ⌊
λ

i jk
1 + λ

jk
2 + λk

3

⌋+ 1 =: si jk,

where �r	 denotes the floor function.
Finally, when n grows larger than si jk , we want to consider how many interior points this fixed

congruence class produces. Let n = si jk + �, so each interior point corresponds to a choice of k1 � 0,

k2 � 0, k3 � 0 in the formula of λ
i jk,k1
1 , λ

i j,k2
2 and λ

i,k3
3 such that k1 + k2 + k3 � �. There are

(d+�
�

)
choices in total.

In summary, the following two facts hold for each congruence class (i, j,k), k ∈ {1,2, . . . ,a33},
j ∈ {1,2, . . . ,a22}, i ∈ {1,2, . . . ,a11}:

(1) si jk is the smallest n such that this congruence class contributes interior points in the n-th dilation
of P(A).

(2) In the (si jk + �)-th dilation of P(A), this congruence class contributes
(d+�

�

)
interior points.

The previous considerations imply the d = 3 instance of the following theorem. The general d case
follows in analogous manner.
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Theorem 2.1. Let P(A) be a simplex of dimension d corresponding to a d × d matrix A = (aij) ∈ Z
d×d. Then

the generating function for i∗(P(A),n) is given by

∞∑
n=1

i∗
(
P(A),n

)
tn = (1 − t)−(d+1)

∑
(i1,...,id)
1�i j�aij

tsi1 ···id ,

where

si1···id =
⌊

d∑
k=1

λ
ik,ik+1,...,id
k

⌋
+ 1, with λ

id
d = id

add
,

and

λ
ik,ik+1,...,id
k = a−1

kk

(
ik −

{
d∑

h=k+1

ahkλ
ih ih+1···id
h

})
, for 1 � k < d.

By the reciprocity law (1.1), we have

δP(A)(t) =
∑

(i1,...,id)
1�i j�aij

td+1−si1 ···id .

Example 2.2. Let A be the 4 × 4 matrix⎛
⎜⎝

1 0 0 0
0 1 0 0
1 1 2 0
1 0 1 3

⎞
⎟⎠ .

Then, for 1 � i � 2 and 1 � j � 3,

λ
i j
2 = 1 − {

λ
i j
3

}
, λ

i j
1 = 1 − {

λ
i j
3 + λ

j
4

}
,

where

λ
j
4 = j

3
, λ

i j
3 = i − {λ j

4}
2

, λ
i j
2 = 1 − {

λ
i j
3

}
, λ

i j
1 = 1 − {

λ
i j
3 + λ

j
4

}
.

From this we compute

s11 = 2, s21 = 3, s12 = 2, s22 = 3, s13 = 3, s23 = 5,

so that

δP(A)(t) =
3∑

i=1

2∑
j=1

td+1−si j = 1 + 3t2 + 2t3,

and thus

δ
(
P(A)

) = (1,0,3,2,0).
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3. Shifted symmetric δ-vectors

In this section we define shifted symmetric δ-vectors and study when we have this property for
some special Hermite normal forms. Results in this section are direct applications of the algorithm de-
veloped in the previous section, see Theorem 2.1. In [5], the second author studied shifted symmetric
δ-vectors without using this algorithm.

We call a δ-vector shifted symmetric if δi = δd+1−i for 1 � i � d. For example, (1,1,2,2,1,2,2,1) is
shifted symmetric.

The motivation for this definition is that it arises from the algorithm for the “one row” Hermite
normal forms as discussed in Section 3.1. We will consider a special “one row” Hermite normal form
in Section 3.2, which allows us to have better results.

3.1. “One row” Hermite normal forms

Consider all d × d matrices with positive determinant D and the following Hermite normal form.

AD =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1
a1 · · · ak−1 D

1
. . .

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ Z
d×d (3.1)

for some k ∈ {1,2, . . . ,d}, where a1, . . . ,ak−1 are nonnegative integers smaller than D and all other
entries are zero. Let d j denote the number of j’s among these a� ’s, for j = 1, . . . , D − 1. Then we can
simplify Theorem 2.1 for these “one row” Hermite normal forms.

Corollary 3.1. Let M ∈ Z
d×d with det(M) = D and P(M) be the corresponding integral simplex. If its Hermite

normal form is of the form as in (3.1), then we have

δP(M)(t) =
D∑

i=1

td+1−si ,

where

si =
⌊

i

D
−

D−1∑
j=1

{
i j

D

}
d j

⌋
+ d. (3.2)

Proof. Consider

b(λ) = (λ1, . . . , λk, . . . , λd)AD = (λ1 + a1λk, . . . , λk−1 + ak−1λk, Dλk, λk+1, . . . , λd).

Using the notation from the proof of Theorem 2.1, we have, for i = 1,2, . . . , D ,

λi
k = i

D
, λi

� = 1 −
{

a�

i

D

}
, for � = 1, . . . ,k − 1

and

λi
k+1 = · · · = λi

d = 1.

Therefore, si = 1 + �λi
1 + · · · + λi

d	 = � i
D −∑D−1

j=1 { i j
D }d j	 + d. �

By using the above corollary, we deduce a symmetry property of the δ-vectors.



1164 T. Hibi et al. / Journal of Combinatorial Theory, Series A 119 (2012) 1158–1173
Proposition 3.2 (Shifted symmetry for “one row”). For a matrix M ∈ Z
d×d with Hermite normal form (3.1),

we have si + sD−i = d + 1, for i = 1, . . . , D − 1, which implies δi = δd+1−i by reciprocity, if and only if the
following three conditions hold:

(1)
∑D−1

j=1 jd j − 1 is coprime with D;
(2) d j = 0 for all j which is not coprime with D;
(3)

∑D−1
j=1 d j = d − 1.

Proof. Let us consider si + sD−i . For an integer a, let a denote its residue class in Z/DZ. Then we
have

si + sD−i =
⌊

i

D
−

D−1∑
j=1

{
i j

D

}
d j

⌋
+

⌊
D − i

D
−

D−1∑
j=1

{
(D − i) j

D

}
d j

⌋
+ 2d

=
⌊ i −∑D−1

j=1 i jd j

D

⌋
+

⌊ D − i −∑D−1
j=1 (D − i) jd j

D

⌋
+ 2d.

Since ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

i −
D−1∑
j=1

i jd j ≡ i

(
1 −

D−1∑
j=1

jd j

)
(mod D),

D − i −
D−1∑
j=1

(D − i) jd j ≡ (D − i)

(
1 −

D−1∑
j=1

jd j

)
(mod D),

(3.3)

if the condition (1) is not satisfied, then one has

si + sD−i = D −∑D−1
j=1 (i j + (D − i) j)d j

D
+ 2d

= 2d + 1 −
D−1∑
j=1

i j + (D − i) j

D
d j

� 2d + 1 −
D−1∑
j=1

d j � d + 2 > d + 1

for some i with 1 � i � D −1. Thus, the condition (1) is a necessary condition to have si + sD−i = d+1
for all i. On the other hand, when the condition (1) is satisfied, again from (3.3), we have

si + sD−i = D −∑D−1
j=1 (i j + (D − i) j)d j

D
+ 2d − 1

= 2d −
D−1∑
j=1

i j + (D − i) j

D
d j

= 2d −
∑
D�i j

d j .

If the condition (2) is not satisfied, then we have

si + sD−i = 2d −
∑
D�i j

d j > d + 1
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for some i with 1 � i � D −1. Hence, the condition (2) is also a necessary condition. In addition, if the
condition (3) is not satisfied, then we have si + sD−i > d+1. Thus, the condition (3) is also a necessary
condition. On the other hand, when the conditions (1)–(3) are all satisfied, we have si + sD−i = D + 1
for all i. �

The conditions of Proposition 3.2 are not very easy to check, so we consider a special case of
Hermite normal forms (3.1).

3.2. “All D − 1 one row” Hermite normal forms

Assume in addition that dD−1 = d −1 in Corollary 3.1, i.e., the Hermite normal form takes the form⎛
⎜⎜⎜⎜⎝

1
1

. . .

1
D − 1 D − 1 · · · D − 1 D

⎞
⎟⎟⎟⎟⎠ . (3.4)

Then we have

Corollary 3.3 (All D − 1). For a matrix M ∈ Z
d×d with Hermite normal form (3.4), we have

δP(M)(t) =
D∑

i=1

td+1−si , where si =
⌊

id

D

⌋
+ 1.

For the Hermite normal form (3.4), the conditions for shifted symmetry in Proposition 3.2 can be
simplified.

Proposition 3.4 (Shifted symmetry for “all D − 1 one row”). Let M ∈ Z
d×d with Hermite normal form (3.4).

Then

(1) δi = δd+1−i if and only if D and d are coprime.
(2) When D = kd, for k ∈N and k � 2, the δ-vector is

(1,k, . . . ,k︸ ︷︷ ︸
d−1

,k − 1),

which is not shifted symmetric. But for k = 2, we have δk = δd−k (i.e., it is Gorenstein).

4. Classification of Hermite normal forms with a given δ-vector

In this section we give another application of the algorithm Theorem 2.1. Consider Problem 1.2
with the assumption that the matrix A ∈ Z

d×d has prime determinant, i.e., A is of the form (3.1), with
only one general row. By Corollary 3.1, in order to classify all possible Hermite normal forms (3.1) with
a given δ-vector (δ0, δ1, . . . , δd), we need to find all nonnegative integer solutions (d1,d2, . . . ,dD−1)

with d1 + d2 + · · · + dD−1 � d − 1 such that

#{i: d + 1 − si = j, for i = 1, . . . , D} = δ j, for j = 0, . . . ,d.

By Corollary 3.1, we can build equations with “floor” expressions for (d1,d2, . . . ,dD−1). Removing the
“floor” expressions, we obtain D linear equations of (d1,d2, . . . ,dD−1) with different constant terms
but the same D × D coefficient matrix M . Then we first find all integer solutions (d1,d2, . . . ,dD−1)

and check every candidate using the restrictions of nonnegativity and d1 + d2 + · · · + dD−1 � d − 1.
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For D = 2 and 3, the coefficient matrix M is nonsingular, so we can write down the complete
solutions, as presented in the first two subsections. For larger primes, the coefficient matrix becomes
singular, so there are free variables in the integer solutions (d1,d2, . . . ,dD−1), which make it very
hard to simplify the final solutions after the test.

The idea is similar for Hermite normal forms with nonprime determinant. Instead of using Corol-
lary 3.1, we need to use the formulas in Theorem 2.1. In Section 4.3, we will present the complete
solution for D = 4.

4.1. A solution of Problem 1.2 when
∑d

i=0 δi = 2

The goal of this subsection is to give a solution of Problem 1.2 when
∑d

i=0 δi = 2, i.e., given a

δ-vector (δ0, δ1, . . . , δd) with
∑d

i=0 δi = 2, we classify all the integral simplices with (δ0, δ1, . . . , δd)

arising from Hermite normal forms with determinant 2.
We consider all Hermite normal forms (3.1) with D = 2, where there are d1 1’s among the

a1, . . . ,ak−1. Notice that the position of the row with a 2 does not affect the δ-vector, so the only
variable is d1. By Corollary 3.1, we have a formula for the δ-vector of this integral simplex P(A2).
Denote

k = 1 −
⌊

1 − d1

2

⌋
.

Then one has δ0 = δk = 1.
By this formula, we can characterize all Hermite normal forms with a given δ-vector. Let δ0 =

δi = 1. Then by solving the equation i = 1 − �(1 − d1)/2	, we obtain d1 = 2i − 2 and d1 = 2i − 1, both
cases will give us the desired δ-vector.

Notice that there is a constraint on d1 given by 0 � d1 � d − 1. Not all δ-vectors are obtained from
simplices. But we can easily get the appropriate conditions on i and the corresponding d1 as follows
(by d1 � 0, we have i � 1):

(1) If i � d/2, d1 = 2i−2 and d1 = 2i−1 both work, and these give all the matrices with this δ-vector.
(2) If i = (d + 1)/2, only d1 = 2i − 2 = d − 1 works.
(3) If i > (d + 1)/2, there is no solution.

Now, this result has been obtained essentially in [4]. In fact, the inequality i � (d + 1)/2 means
that the δ-vector satisfies (1.4).

4.2. A solution of Problem 1.2 when
∑d

i=0 δi = 3

We consider all Hermite normal forms (3.1) with D = 3, where there are d1 1’s and d2 2’s among
the a1, . . . ,ak−1. The position of the row with a 3 does not affect the δ-vector, so the only variables
are d1 and d2. Also, by Corollary 3.1, we have δP(A3)(t) = 1 + tk1 + tk2 , where

k1 = 1 −
⌊

1 − d1 − 2d2

3

⌋
and k2 = 1 −

⌊
2 − 2d1 − d2

3

⌋
.

Then by the formula, we can characterize all Hermite normal forms with a given δ-vector using
arguments similar to

∑d
i=0 δi = 2. Let δP(A3)(t) = 1 + ti + t j . Set

i = 1 −
⌊

1 − d1 − 2d2

3

⌋
and j = 1 −

⌊
2 − 2d1 − d2

3

⌋
.

(Later reverse the role of i and j if i �= j, in both equations and solutions.) The solutions for (d1,d2)

are

d(1) =
{

d1 = 2 j − i,
d(2) =

{
d1 = 2 j − i − 1,

and d(3) =
{

d1 = 2 j − i,
d2 = 2i − j − 1, d2 = 2i − j − 1 d2 = 2i − j − 2.
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Table 1
Characterizations for matrices of the form A3.

2 j 2i i + j solutions

� i � j + 1 � d d(1)

� i + 1 � j + 1 � d + 1 d(2)

� i � j + 2 � d + 1 d(3)

In addition, by the restriction on (d1,d2) that d1,d2 � 0 and d1 + d2 � d − 1, we have the characteri-
zations shown in Table 1.

(1) If 2 j � i, 2i � j + 1 and i + j � d, then the solution d(1) will work and this gives all the matrices
with this δ-vector.

(2) If 2 j � i + 1, 2i � j + 1 and i + j � d + 1, then the solution d(2) will work and this gives all the
matrices with this δ-vector.

(3) If 2 j � i, 2i � j + 2 and i + j � d + 1, then the solution d(3) will work and this gives all the
matrices with this δ-vector.

(4) If {i, j} in the given vector does not satisfy any of the above cases, there is no matrix with this
vector as its δ-vector.

Again, this result has been obtained in [4]. In fact, for example, the inequality 2 j � i means that
(1.3) holds and the inequality i + j � d + 1 means that (1.4) holds.

Notice that only the solution

d(2) =
{

d1 = d − 1,

d2 = 0

works when i = (d + 2)/3 and j = (2d + 1)/3. This happens when d ≡ 1 (mod 3) and there is only
one matrix with d1 = d − 1 and d2 = 0. Similarly, only the solution

d(3) =
{

d1 = 0,

d2 = d − 1

works when i = (2d + 2)/3 and j = (d + 1)/3. This happens when d ≡ 2 (mod 3) and again, there is
only one matrix with d1 = 0 and d2 = d − 1.

4.3. A solution of Problem 1.2 when
∑d

i=0 δi = 4

When the determinant is 4, there are two cases of Hermite normal forms. One is the Hermite
normal forms (3.1) with D = 4, where there are d1 1’s, d2 2’s and d3 3’s among the a1, . . . ,ak−1. The
other hermit normal form takes the form

A′
4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1
∗ · · · ∗ 2

1
. . .

1
∗̇ · · · ∗̇ ∗̄ ∗̇ · · · ∗̇ 2

1
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.1)

where there are d1 1’s (resp. d′
1 1’s) among ∗’s (resp. ∗̇’s), there are e1 1’s (resp. e′

1 1’s) among the ∗’s
(resp. ∗̇’s) of which the entry of the row of ∗̇ (resp. ∗) in the same column is 0. Also, set d′′

1 = e1 + e′
1.

(For example, a 6 × 6 Hermite normal form
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Table 2
Characterizations for matrices of the form A4.

j + k 2 j i + j solutions

� i + 1 � i + k � d + 1 � k + 1 d(1)

� i � i + k � d + 1 � k + 2 d(2)

� i � i + k � d � k + 1 d(3)

� i � i + k − 1 � d � k + 1 d(4)

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 1 1 2 0 0
0 0 0 0 1 0
1 1 0 1 1 2

⎞
⎟⎟⎟⎟⎟⎠

is a matrix (4.1) with d1 = 2, d′
1 = 3, e1 = 1, e′

1 = 2, d′′
1 = 3 and ∗̄ = 1.)

First, we consider the Hermite normal forms A4. Then, by Corollary 3.1, we have δP(A4)(t) = 1 +
tk1 + tk2 + tk3 , where

k1 = 1 −
⌊

1 − d1 − 2d2 − 3d3

4

⌋
, k2 = 1 −

⌊
1 − d1 − d3

2

⌋
and

k3 = 1 −
⌊

3 − 3d1 − 2d2 − d3

4

⌋
.

Let δP(A4)(t) = 1 + ti + t j + tk . We get three sets of equations:

i = 1 −
⌊

1 − d1 − 2d2 − 3d3

4

⌋
, j = 1 −

⌊
1 − d1 − d3

2

⌋
and

k = 1 −
⌊

3 − 3d1 − 2d2 − d3

4

⌋
.

(Later replace the roles of i, j and k if any of the three are distinct.) The solutions for (d1,d2,d3) are

d(1) =
⎧⎨
⎩

d1 = −i + j + k − 1,

d2 = i − 2 j + k,

d3 = i + j − k − 1,

d(2) =
⎧⎨
⎩

d1 = −i + j + k,

d2 = i − 2 j + k,

d3 = i + j − k − 2,

d(3) =
⎧⎨
⎩

d1 = −i + j + k,

d2 = i − 2 j + k,

d3 = i + j − k − 1,

d(4) =
⎧⎨
⎩

d1 = −i + j + k,

d2 = i − 2 j + k − 1,

d3 = i + j − k − 1.

In addition, by the restriction on (d1,d2,d3) that d1,d2,d3 � 0 and d1 + d2 + d3 � d − 1, we have the
characterizations shown in Table 2.

(1) If j +k � i + 1, 2 j � i +k � d + 1 and i + j � k + 1, then the solution d(1) will work and this gives
all the matrices with this δ-vector.

(2) If j + k � i, 2 j � i + k � d + 1 and i + j � k + 2, then the solution d(2) will work and this gives all
the matrices with this δ-vector.

(3) If j + k � i, 2 j � i + k � d and i + j � k + 1, then the solution d(3) will work and this gives all the
matrices with this δ-vector.

(4) If j +k � i, 2 j + 1 � i +k � d + 1 and i + j � k + 1, then the solution d(4) will work and this gives
all the matrices with this δ-vector.

(5) If {i, j,k} in the given vector does not satisfy any of the above cases, there is no matrix A4 with
this vector as its δ-vector.
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Table 3
Characterizations for matrices of the form (4.1) with ∗̄ = 0.

i j k i + j i + k j + k i + j + k solutions

� � d
2 	 � � d−1

2 	 � 2, � k � j + 2 � i + 1 � d + 1 d(1)

� � d+1
2 	

� � d−1
2 	 � � d

2 	 � 2, � k � j + 1 � i + 2 � d + 1 d(2)

� � d+1
2 	

� � d−1
2 	 � � d−1

2 	 � � d
2 	 � k � j + 1 � i + 1 � d d(3)

� � d
2 	 � � d

2 	 � � d
2 	 � k + 1 � j + 1 � i + 1 � d + 1 d(4)

Notice that only the solution

d(2) =
⎧⎨
⎩

d1 = 0,

d2 = 0,

d3 = d − 1

works when i = (3d + 3)/4, j = (d + 1)/2 and k = (d + 1)/4. This happens when d ≡ 3 (mod 4) and
there is only one matrix with d3 = d − 1. Similarly, only the solution

d(1) =
⎧⎨
⎩

d1 = d − 1,

d2 = 0,

d3 = 0

works when i = (d + 3)/4, j = (d + 1)/2 and k = (3d + 1)/4. This happens when d ≡ 1 (mod 4) and
again, there is only one matrix with d1 = d − 1.

Next, we consider the Hermite normal forms (4.1). However, we need to consider two cases, which
are the cases where ∗̄ = 0 and ∗̄ = 1.

First, we consider the case with ∗̄ = 0. Notice that the variables are d1,d′
1 and d′′

1. Obviously we
cannot use Corollary 3.1, but we apply Theorem 2.1 directly. Thus we have δP(A′

4)(t) = 1 + tk1 +
tk2 + tk3 , where

k1 =
⌊

d1 + 2

2

⌋
, k2 =

⌊
d′

1 + 2

2

⌋
and k3 =

⌊
d′′

1 + 3

2

⌋
.

Let δP(A′
4)(t) = 1 + ti + t j + tk . We get three sets of equations:

i =
⌊

d1 + 2

2

⌋
, j =

⌊
d′

1 + 2

2

⌋
and k =

⌊
d′′

1 + 3

2

⌋
or replace the role of i, j and k if i, j and k are distinct, in all equations and solutions. Since d1 +d′

1 +
d′′

1 is even, the solutions for (d1,d′
1,d′′

1) are

d(1) =

⎧⎪⎨
⎪⎩

d1 = 2i − 2,

d′
1 = 2 j − 1,

d′′
1 = 2k − 3,

d(2) =

⎧⎪⎨
⎪⎩

d1 = 2i − 1,

d′
1 = 2 j − 2,

d′′
1 = 2k − 3,

d(3) =

⎧⎪⎨
⎪⎩

d1 = 2i − 1,

d′
1 = 2 j − 1,

d′′
1 = 2k − 2,

d(4) =

⎧⎪⎨
⎪⎩

d1 = 2i − 2,

d′
1 = 2 j − 2,

d′′
1 = 2k − 2.

In addition, by the restriction on (d1,d′
1,d′′

1) that 0 � d1 � d − 2, 0 � d′
1 � d − 2, 0 � d′′

1 � d − 2,
d1 + d′

1 + d′′
1 � 2(d − 2), d′′

1 � d1 + d′
1, d′

1 � d1 + d′′
1 and d1 � d′

1 + d′′
1, we have the characterizations

shown in Table 3.
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Table 4
Characterizations for matrices of the form (4.1) with ∗̄ = 1.

2k 2i 2 j i + j i + k j + k solutions

� j + 3, � j + 2, � d − 1 � k � 2 j + 2, � i + 1 d(1)

� d + j + 1 � d + j � d + 1

� j + 2, � j + 1, � d − 1 � k � 2 j + 1, � i + 1 d(2)

� d + j � d + j − 1 � d

� j + 3, � j + 1, � d � k � 2 j + 1, � i + 2 d(3)

� d + j + 1 � d + j − 1 � d + 1

� j + 2, � j + 2, � d � k + 1 � 2 j + 1, � i + 1 d(4)

� d + j � d + j � d + 1

(1) If i � �d/2	, j � �(d − 1)/2	, 2 � k � �(d + 1)/2	, i + j + k � d + 1, k � i + j, j + 2 � i + k and
i + 1 � j + k, then the solution d(1) will work and this gives all the matrices with this δ-vector.

(2) If i � �(d − 1)/2	, j � �d/2	, 2 � k � �(d + 1)/2	, i + j + k � d + 1, k � i + j, j + 1 � i + k and
i + 2 � j + k, then the solution d(2) will work and this gives all the matrices with this δ-vector.

(3) If i, j � �(d − 1)/2	, k � �d/2	, i + j + k � d, k � i + j, j + 1 � i + k and i + 1 � j + k, then the
solution d(3) will work and this gives all the matrices with this δ-vector.

(4) If i, j,k � �d/2	, i + j + k � d + 1, k + 1 � i + j, j + 1 � i + k and i + 1 � j + k, then the solution
d(4) will work and this gives all the matrices with this δ-vector.

(5) If {i, j,k} in the given vector does not satisfy any of the above cases, there is no matrix (4.1),
where ∗̄ = 0, with this vector as its δ-vector.

Next, we consider the case with ∗̄ = 1. By Theorem 2.1, we have δP(A′
4)(t) = 1 + tk1 + tk2 + tk3 ,

where

k1 = 1 −
⌊

1 − d1 − 2d′′
1

4

⌋
, k2 = 1 −

⌊
1 − d1

2

⌋
and k3 = 2 −

⌊
3 − d1 − 2d′

1

4

⌋
.

Let δP(A′
4)(t) = 1 + ti + t j + tk . We get three sets of equations:

i = 1 −
⌊

1 − d1 − 2d′′
1

4

⌋
, j = 1 −

⌊
1 − d1

2

⌋
and k = 2 −

⌊
3 − d1 − 2d′

1

4

⌋
or replace the roles of i, j and k if i, j and k are distinct. Since d1 + d′

1 + d′′
1 is even, the solutions for

(d1,d′
1,d′′

1) are

d(1) =

⎧⎪⎨
⎪⎩

d1 = 2 j − 1,

d′
1 = 2k − j − 3,

d′′
1 = 2i − j − 2,

d(2) =

⎧⎪⎨
⎪⎩

d1 = 2 j − 1,

d′
1 = 2k − j − 2,

d′′
1 = 2i − j − 1,

d(3) =

⎧⎪⎨
⎪⎩

d1 = 2 j − 2,

d′
1 = 2k − j − 3,

d′′
1 = 2i − j − 1,

d(4) =

⎧⎪⎨
⎪⎩

d1 = 2 j − 2,

d′
1 = 2k − j − 2,

d′′
1 = 2i − j − 2.

In addition, by the restriction on (d1,d′
1,d′′

1) that 0 � d1 � d − 2, 0 � d′
1 � d − 2, 0 � d′′

1 � d − 2,
d1 + d′

1 + d′′
1 � 2(d − 2), d′′

1 � d1 + d′
1, d′

1 � d1 + d′′
1 and d1 � d′

1 + d′′
1, we have the characterizations

shown in Table 4.

(1) If j + 3 � 2k � d + j + 1, j + 2 � 2i � d + j, 2 j � d − 1, k � i + j, 2 j + 2 � i + k � d + 1 and
i + 1 � j + k, then the solution d(1) will work and this gives all the matrices with this δ-vector.

(2) If j +2 � 2k � d + j, j +1 � 2i � d + j −1, 2 j � d −1, k � i + j, 2 j +1 � i +k � d and i +1 � j +k,
then the solution d(2) will work and this gives all the matrices with this δ-vector.
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(3) If j + 3 � 2k � d + j + 1, j + 1 � 2i � d + j − 1, 2 j � d, k � i + j, 2 j + 1 � i + k � d + 1 and
i + 2 � j + k, then the solution d(3) will work and this gives all the matrices with this δ-vector.

(4) If j +2 � 2k � d + j, j +2 � 2i � d + j, 2 j � d, k +1 � i + j, 2 j +1 � i +k � d +1 and i +1 � j +k,
then the solution d(4) will work and this gives all the matrices with this δ-vector.

(5) If {i, j,k} in the given vector does not satisfy any of the above cases, there is no matrix (4.1) with
this vector as its δ-vector.

Notice that only the solution

d(3) =

⎧⎪⎨
⎪⎩

d1 = d − 2,

d′
1 = d − 2,

d′′
1 = 0

works when i = (d + 2)/4, j = d/2 and k = (3d + 2)/4. This happens when d ≡ 2 (mod 4) and there
is only one matrix with d1 = d′

1 = d − 2. Similarly, only the solution

d(4) =

⎧⎪⎨
⎪⎩

d1 = d − 2,

d′
1 = 0,

d′′
1 = d − 2

works when i = 3d/4, j = d/2 and k = d/4 + 1. This happens when d ≡ 0 (mod 4) and again, there is
only one matrix with d1 = d′′

1 = d − 2.

5. The classification of the possible δ-vectors with
∑d

i=0 δi = 4

In this section we classify the possible δ-vectors with
∑d

i=0 δi = 4 using results from Section 4.3.
Let 1 + ti1 + ti2 + ti3 with 1 � i1 � i2 � i3 � d be a δ-polynomial for some integral polytope and

(δ0, δ1, . . . , δd) the sequence of the coefficients of this polynomial, where it is clear that δ0 = 1 and∑d
i=0 δi = 4. Assume that (δ0, δ1, . . . , δd) satisfies the inequalities (1.3), (1.4) and δ1 � δd , which are

necessary conditions to be a possible δ-vector. Then (1.3) and (1.4) lead into the following inequalities
that (i1, i2, i3) satisfies

i3 � i1 + i2, i1 + i3 � d + 1 and i2 �
⌊
(d + 1)/2

⌋
. (5.1)

Finally, the classification of possible δ-vectors of integral polytopes with
∑d

i=0 δi = 4 is given by
the following

Theorem 5.1. Let 1 + ti1 + ti2 + ti3 be a polynomial with 1 � i1 � i2 � i3 � d. Then there exists an integral
polytope P ⊂R

d of dimension d whose δ-polynomial equals 1+ ti1 + ti2 + ti3 if and only if (i1, i2, i3) satisfies
(5.1) and the additional condition

2i2 � i1 + i3 or i2 + i3 � d + 1. (5.2)

Moreover, all these polytopes can be chosen to be simplices.

Proof. There are four cases: (1) i1 = i2 = i3, (2) i1 < i2 = i3, (3) i1 = i2 < i3, (4) i1 < i2 < i3. We
will show that in each case (5.1) together with (5.2) are the necessary and sufficient conditions for
1 + ti1 + ti2 + ti3 to be the δ-polynomial of some integral polytope.

(1) Assume i1 = i2 = i3 = �. By the inequalities (5.1), we have 1 � � � �(d +1)/2	. Set i = j = k = �.
We have

j + k � i + 1, 2 j � i + k � d + 1 and i + j � k + 1. (5.3)

Thus, by our result on the classification in the case of a matrix of the form A4 (Table 2, the solution
d(1)), there exists an integral simplex whose δ-vector is of the form (1,0, . . . ,0,3,0, . . . ,0).
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On the other hand, if there exists an integral polytope with this δ-vector, then (5.1) holds since it
is a necessary condition. In this case, both inequalities in (5.2) hold.

(2) Assume � = i1 < i2 = i3 = �′ . By (5.1), we have 1 � � < �′ � �(d + 1)/2	. Let j = � and
i = k = �′ . Then the inequalities (5.3) hold. Thus there exists an integral simplex whose δ-vector is
(1,0, . . . ,0,1,0, . . . ,0,2,0, . . . ,0).

On the other hand, if there exists an integral polytope with this δ-vector, then we have (5.1) and
i2 + i3 � d + 1 follows from i2 � �(d + 1)/2	.

(3) Assume � = i1 = i2 < i3 = �′ . Set i = �′ and j = k = �. Then it follows from (5.1) that

j + k � i, 2 j + 1 � i + k � d + 1 and i + j � k + 1.

Thus, by our result (Table 2, the solution d(4)), there exists an integral simplex whose δ-vector is
(1,0, . . . ,0,2,0, . . . ,0,1,0, . . . ,0).

On the other hand, if there exists an integral polytope with this δ-vector, then (5.1) holds. In this
case, both inequalities in (5.2) hold.

(4) Assume 1 � i1 < i2 < i3 � d. Suppose 2i2 � i1 + i3 holds. Set i = i3, j = i2 and k = i1. Then we
have j + k = i1 + i2 � i3 = i, 2 j = 2i2 � i1 + i3 = i + k � d + 1 and i + j = i2 + i3 � 2i2 + 1 � 2i1 + 3 >

i1 + 2 = k + 2. Thus, by our result (Table 2, the solution d(2)), there exists an integral simplex whose
δ-vector is (1,0, . . . ,0,1,0, . . . ,0,1,0, . . . ,0,1,0, . . . ,0).

Suppose i2 + i3 � d + 1 holds. Set i = i3, j = i1 and k = i2. Then we have j + k = i1 + i2 �
i3 = i, 2 j = 2i1 < i2 + i3 = i + k � d + 1 and i + j = i1 + i3 � i1 + i2 + 1 � i2 + 2 = k + 2.
Thus, by our result (Table 2, the solution d(2)), there exists an integral simplex whose δ-vector is
(1,0, . . . ,0,1,0, . . . ,0,1,0, . . . ,0,1,0, . . . ,0).

On the other hand, assume the contrary of (5.2): both 2i2 > i1 + i3 and i2 + i3 > d + 1 hold. We
claim that there exists no integral polytope P with this δ-vector. First we want to show that if there
exists such a polytope, it must be a simplex. Note that the δ-vector satisfies (5.1). Suppose i1 = 1.
It then follows from (5.1) and i2 + i3 > d + 1 that i2 = (d + 1)/2 and i3 = (d + 3)/2. However, this
contradicts (1.4). Therefore i1 > 1, and thus δ1 = 0. By the explanation after Eq. (1.2), P must be a
simplex. Now we can apply our characterization results for simplices.

If we set j = i3, then 2 j = 2i3 > i1 + i2 = i + k. If we set j = i2, then 2 j = 2i2 > i1 + i3 = i + k. If
we set j = i1, then i + k = i2 + i3 > d + 1. In any case there does not exist a Hermite normal form A4
whose δ-polynomial coincides with 1 + ti1 + ti2 + ti3 .

Moreover, since i + j + k = i1 + i2 + i3 > i2 + i3 > d + 1, there does not exist a Hermite normal
form (4.1) with ∗̄ = 0 whose δ-polynomial coincides with 1 + ti1 + ti2 + ti3 .

In addition, if we set j = i3, then 2 j = 2i3 > i1 + i2 = i + k. If we set j = i2, then 2 j = 2i2 >

i1 + i3 = i +k. If we set j = i1, then i +k = i2 + i3 > d + 1. Thus there does not exist a Hermite normal
form (4.1) with ∗̄ = 1 whose δ-polynomial coincides with 1 + ti1 + ti2 + ti3 . �
Examples 5.2. (a) We consider the integer sequence (1,0,1,1,0,1,0). Then one has i1 = 2, i2 = 3,
i3 = 5 and d = 6. Since (1.3) and (1.4) are satisfied and 2i2 � i1 + i3 holds, there is an integral polytope
whose δ-vector coincides with (1,0,1,1,0,1,0) by Theorem 5.1. In fact, let M ∈ Z

6×6 be the Hermite
normal form A4 with (d1,d2,d3) = (0,1,4) or (0,0,5). Then we have δ(P(M)) = (1,0,1,1,0,1,0).

(b) There is no integral polytope with its δ-vector (1,0,1,0,1,1,0,0) since we have 2i2 > i1 + i3
and i2 + i3 > d + 1, although this integer sequence satisfies (1.3) and (1.4). (This example is described
in [4, Example 1.2] as a counterexample of [4, Theorem 0.1] for the case where

∑d
i=0 δi = 4.) However,

there exists an integral polytope with its δ-vector (1,0,1,0,1,1,0,0,0) since i2 + i3 = d + 1 holds.

Remark 5.3. From the above proof, we can see that when
∑d

i=0 δi = 4, all the possible δ-vectors

can be obtained by simplices. This is also true for all δ-vectors with
∑d

i=0 δi � 3, from the proof

of [4, Theorem 0.1]. However, when
∑d

i=0 δi = 5, the δ-vector (1,3,1) cannot be obtained from any
simplex, while it is a possible δ-vector of an integral polygon. In fact, suppose that (1,3,1) can be ob-
tained from a simplex. Since min{i: δi �= 0, i > 0} = 1 and max{i: δi �= 0} = 2, one has min{i: δi �= 0,

i > 0} = 3 − max{i: δi �= 0}, which implies that the assumption of [5, Theorem 2.3] is satisfied. Thus
the δ-vector must be shifted symmetric, a contradiction.
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