期刊论文详细信息
JOURNAL OF COMBINATORIAL THEORY SERIES A 卷:154
Torus link homology and the nabla operator
Article
Wilson, A. T.1 
[1] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
关键词: Torus links;    Khovanov-Rozansky homology;    Macdonald polynomials;    Macdonald eigenoperators;    Nabla operator;   
DOI  :  10.1016/j.jcta.2017.08.009
来源: Elsevier
PDF
【 摘 要 】

In recent work, Elias and Hogancamp develop a recurrence for the Poincare series of the triply graded Khovanov-Rozansky homology of certain links, one of which is the (n, n) torus link. In this case, Elias and Hogancamp give a combinatorial formula for this homology that is reminiscent of the combine, torics of the modified Macdonald polynomial eigenoperator del. We give a combinatorial formula for the homologies of all complexes considered by Elias and Hogancamp. Our first formula is not easily computable, so we show how to transform it into a computable version. Finally, we conjecture a direct relationship between the (n, n) torus link case of our formula and the symmetric function del p(1)(n). Published by Elsevier Inc.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcta_2017_08_009.pdf 373KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次