期刊论文详细信息
JOURNAL OF ALGEBRA 卷:520
Modules over plane curve singularities in any ranks and DAHA
Article
Cherednik, Ivan1  Philipp, Ian1 
[1] Univ N Carolina, Dept Math, Chapel Hill, NC 27599 USA
关键词: Hecke algebra;    Khovanov-Rozansky homology;    Algebraic knot;    Macdonald polynomial;    Plane curve singularity;    Compactified Jacobian;    Puiseux expansion;    Orbital integral;   
DOI  :  10.1016/j.jalgebra.2018.11.006
来源: Elsevier
PDF
【 摘 要 】

We generalize the construction of geometric superpolynomials for unibranch plane curve singularities from our prior paper from rank one to any ranks; explicit formulas are obtained for torus knots. The new feature is the definition of counterparts of Jacobian factors (directly related to compactified Jacobians) for higher ranks, which is parallel to the classical passage from invertible sheaves to vector bundles over algebraic curves. This is an entirely local theory, connected with affine Springer fibers for non-reduced (germs of) spectral curves. We conjecture and justify numerically the connection of our geometric polynomials in arbitrary ranks with the corresponding DAHA superpolynomials for any algebraic knots colored by columns. (C) 2018 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2018_11_006.pdf 716KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次