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In recent work, Elias and Hogancamp develop a recurrence for 
the Poincaré series of the triply graded Khovanov–Rozansky 
homology of certain links, one of which is the (n, n) torus 
link. In this case, Elias and Hogancamp give a combinatorial 
formula for this homology that is reminiscent of the combina-
torics of the modified Macdonald polynomial eigenoperator ∇. 
We give a combinatorial formula for the homologies of all com-
plexes considered by Elias and Hogancamp. Our first formula 
is not easily computable, so we show how to transform it into 
a computable version. Finally, we conjecture a direct relation-
ship between the (n, n) torus link case of our formula and the 
symmetric function ∇p1n .

Published by Elsevier Inc.

1. Introduction

We begin by establishing some notation from knot theory, following [6]. The remaining 
sections of the paper will take a more combinatorial perspective.

The braid group on n strands, denoted Brn, can be defined by the presentation

Brn = 〈σ1, σ2, . . . , σn−1 |σiσi+1σi = σi+1σiσi+1, σiσj = σjσi〉 (1)
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for all 1 ≤ i ≤ n − 2 and |i − j| ≥ 2. This group can be pictured as all ways to “braid” 
together n strands, where σi corresponds to crossing string i + 1 over string i and the 
group operation is concatenation. One particularly notable braid is the full twist braid
on n strands, denoted FTn, which can be written

FTn = ((σ1)(σ2σ1) . . . (σn−1σn−2 . . . σ1))2 . (2)

We will also need an operation ω on braids which corresponds to rotation around the 
horizontal axis. We define ω on Brn by ω(σi) = σi and ω(αβ) = ω(β)ω(α). Then ω is 
an anti-involution on Brn. A braid that has the property that the string that begins in 
column i also ends in column i for all i is called a pure braid.

Given a braid with n strands, one can form a link (i.e. nonintersecting collection of 
knots) by identifying the top of the strand that begins in position i with the bottom 
of the strand that ends in position i for 1 ≤ i ≤ n. The result is called a closed braid. 
Alexander proved that every link can be represented by a closed braid (although this 
representation is not unique) [1]. The closure of a pure braid is a link that consists of n
separate unknots linked together.

In [6], Elias and Hogancamp assign a diagram to every binary word v. We describe 
this assignment here – see Fig. 1 for an example. Say v ∈ {0, 1}n with |v| = m. We begin 
with n strands at the top of the diagram and two (currently unlabeled) boxes at the 
bottom of the diagram. The left box has n −m inputs and outputs and the right box has 
m inputs and outputs. For i = 1 to n, if vi = 1 we feed string i into the leftmost available 
input in the right box; otherwise, we feed string i into the leftmost available input in 
the left box. All crossings that occur are forced to be “positive,” i.e. the right strand 
crosses over the left strand. We call the braid that is formed by feeding the strands into 
the boxes in this manner βv. We prepend ω(βv) to βv to obtain our final diagram.

Next, we transform the diagram to a complex Cv of Soergel bimodules by replacing 
the left box with the complex associated to the full twist braid FTn−m and the right 
box with the symmetrizer Km [12]. We note that C0n is the bimodule associated to FTn

and that the closure of that associated braid is the (n, n) torus link. The combinatorics 
of other links, in particular the (m, n) torus link for m and n coprime, has been studied 
by a variety of authors in recent years [8,7]. Haglund gives an overview of this work from 
a combinatorial perspective in [10].

Elias and Hogancamp consider the Hochschild homology of this Cv complex of bi-
modules; this is sometimes called Khovanov–Rozansky homology [13,14]. This homology 
has three gradings: the bimodule degree (using the variable Q), the homological de-
gree (T ), and the Hochschild degree (A). After the grading shifts q = Q2, t = T 2Q−2, 
and a = AQ−2, Elias and Hogancamp give a recurrence for the Poincaré series of this 
triply graded homology, which they denote fv(q, t, a). We will use their recurrence to 
define fv(q, t, a) in Section 2. They also give a combinatorial formula for the special case 
f0n(q, t, a). We will give two combinatorial formulas for fv(q, t, a) for every v ∈ {0, 1}n.
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Fig. 1. For v = 10101101 we have drawn the braid βv on the left and the complex Cv on the right. FT3 is 
the complex of the full twist braid and K5 is a certain complex defined recursively in [6]. Images are used 
courtesy of [6].

In Section 2, we define a symmetric function Lv(x; q, t) which we call the link sym-
metric function. Its definition is reminiscent of the combinatorics of the Macdonald 
eigenoperator ∇, introduced in [3]. We prove that fv(q, t, a) is equal to a certain inner 
product with Lv(x; q, t).

The main weakness of our first formula is that it is a sum over infinitely many objects, 
so it is not clear how to compute using this formula. We address this issue in Section 3, 
obtaining a finite formula for Lv(x; q, t) using a collection of combinatorial objects we 
call barred Fubini words.

We close by presenting some conjectures in Section 4. In particular, we conjecture 
that

L0n(x; q, t) = (1 − q)−n∇p1n , (3)

where the terminology is defined in Section 4. A proof of this conjecture would provide the 
first combinatorial interpretation for ∇p1n . There has been much recent work establishing 
combinatorial interpretations for ∇en [5] and ∇pn [18]. We believe that Lv(x; q, t) is also 
related to Macdonald polynomials for general v, although we do not have an explicit 
conjecture in this direction.

2. An infinite formula

Let N = {0, 1, 2, . . .} and P = {1, 2, 3, . . .}. We begin by defining two statistics.

Definition 2.1. Given words γ ∈ Nn and π ∈ Pn, we define

area(γ) = |γ| − #{1 ≤ i ≤ n : γi > 0} (4)

dinv(γ, π) = #{1 ≤ i < j ≤ n : γi = γj , πi > πj} (5)

+ #{1 ≤ i < j ≤ n : γi + 1 = γj , πi < πj}

xπ =
n∏

i=1
xπi

. (6)
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Fig. 2. We have depicted the example γ = 20141022 and π = 41322231 by drawing bottom-justified columns 
with heights γ1, γ2, . . . , γ8 and the labels πi are placed as high as possible in each column. In this example, 
we compute area(γ) = 6, dinv(γ, π) = 7, where the contributing pairs are in columns (1, 7), (1, 8), (2, 3), 
(2, 5), (3, 5), (5, 7), (7, 8), and xπ = x2

1x
3
2x

2
3x4.

In Fig. 2, we draw a diagram for γ = 20141022 and π = 41322231. Area counts the 
empty boxes in such a diagram, dinv counts certain pairs of labels, and xπ records all 
labels that appear in the diagram.

Definition 2.2. Given n ∈ P and v ∈ {0, 1}n, define

Lv = Lv(x; q, t) =
∑

γ∈N
n, π∈P

n

γi=0⇔vi=1

qarea(γ)tdinv(γ,π)xπ. (7)

Perhaps the first thing to note about Lv is that it can be expressed as a sum of LLT 
polynomials [15]; as a result, it is symmetric in the xi variables. More precisely, each 
γ ∈ Nn can be associated with an n-tuple λ(γ) of single cell partitions in the plane, 
where the ith cell is placed on diagonal γi and the order is not changed. Using the 
notation of [11], the unicellular LLT polynomial Gλ(γ)(x; t) can be used to write

Lv =
∑
γ∈N

n

γi=0⇔vi=1

qarea(γ)Gλ(γ)(x; t). (8)

Since LLT polynomials are symmetric, every Lv is also symmetric.
We also remark that L1n is equal to the modified Macdonald polynomial H̃1n(x; q, t), 

which is also equal to the graded Frobenius series of the coinvariants of Sn with grading 
in t.

Next, we note that the Poincaré series fv(q, t, a) can be recovered as a certain inner 
product of Lv. We follow the standard notation for symmetric functions and their usual 
inner product, as described in Chapter 7 of [20]. Before we can prove Theorem 2.1, we 
need the following lemma.

Lemma 2.1.

L0n = 1
1 − q

L10n−1 . (9)
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Proof. By definition,

L0n =
∑

γ,π∈Pn

qarea(γ)tdinv(γ,π)xπ. (10)

Our aim is to show that

L0n = qnL0n +
(
1 + q + . . . + qn−1)L10n−1 (11)

which clearly implies the lemma.
If γi > 1 for all i, then let γ′ be the word obtained by decrementing each entry in γ

by 1. Set π′ = π. Note that the pair (γ′, π′) has

area(γ′) = area(γ) − n (12)

dinv(γ′, π′) = dinv(γ, π) (13)

xπ′
= xπ. (14)

Furthermore, every pair of words of positive integers can be obtained as (γ′, π′) in this 
fashion. This case corresponds to the first term on the right-hand side of (11).

The other case we must consider is if γi = 1 for some i. Let k be the rightmost position 
such that γk = 1. Then we define

γ′′ = (γk − 1)(γk+1 − 1) . . . (γn − 1)γ1γ2 . . . γk−1 (15)

π′′ = πkπk+1 . . . πnπ1π2 . . . πk−1. (16)

It is straightforward to check that

area(γ′′) = area(γ) − (n− k) (17)

dinv(γ′′, π′′) = dinv(γ, π) (18)

xπ′′
= xπ. (19)

Furthermore, by construction we have γ′′
1 = 0 and the other entries of γ′′ are greater 

than 0. Summing over all values of k and pairs (γ′′, π′′) obtained in this way, we get the 
remaining terms in the right-hand side of (11). �

In [6], the authors prove that fv(q, t, a) satisfies a certain recurrence. We will use their 
recurrence as our definition of fv(q, t, a).

Definition 2.3. Given v ∈ {0, 1}n and w ∈ {0, 1}n−|v|, we form a word u ∈ {0, 1, 2}n that 
depends on v and w. We set ui = 1 if vi = 1. If vi = 0, say that we are at the jth zero 
in v, counting from left to right. Then we set ui = 2wj . For example, if v = 10110100
and w = 0110 then u = 10112120. We form a product
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Pv,w(t, a) =
∏

i : vi=1

(
t#{j<i : uj=1}+#{j>i : uj=2} + a

)
. (20)

Using the recurrence in [6], we define

fv(q, t, a) =
∑

w∈{0,1}n−|v|

qn−|v|−|w|Pv,w(t, a)fw(q, t, a) (21)

with base cases f∅(q, t, a) = 1 and f0n(q, t, a) = (1 − q)−1f10n−1(q, t, a).

Theorem 2.1. For any v ∈ {0, 1}n,

fv(q, t, a) =
n∑

d=0

〈Lv, en−dhd〉 ad. (22)

Proof. Let us denote the right-hand side of the statement in the theorem by 	v(q, t, a). 
The goal of this proof is to show that 	v(q, t, a) satisfies (21). As discussed in Chapter 6 
of [9], taking the inner product with en−dhd can be thought of as replacing the word 
π ∈ Pn in Definition 2.2 with a word π containing n − d 0’s and d 1’s. For the purposes 
of computing dinv(γ, π) we consider 0 to be less than itself, but we do not make this 
convention for 1. For example, if γ = 1111 and π = 0101, we have dinv(γ, π) = 2, where 
the two pairs we count are (1, 3) and (1, 2). With these definitions, we can write

	v(q, t, a) =
∑

γ∈N
n, π∈{0,1}n

γi=0⇔vi=1

qarea(γ)tdinv(γ,π)a#1’s in π. (23)

Now we proceed by induction. We can simply define 	∅(q, t, a) = 1 and the fact that 
	0n(q, t, a) = (1 − q)−1	10n−1(q, t, a) follows from Lemma 2.1.

Given a word γ ∈ Nn, we form a word u by setting ui = 1 if γi = 0, ui = 2 if γi = 1, 
and ui = 0 otherwise. From this word u we construct another word w ∈ {0, 1}n−|v| by 
scanning u from left to right and appending a 1 to w whenever we see a 2 in u and 
appending a 0 to w whenever we see a 0 in u. For example, if γ = 013021 we have 
u = 120102 and w = 1001.

Now we can explain why 	v(q, t, a) satisfies (21). First, we note that the qn−|v|−|w| term 
counts the contribution of empty boxes in row 1 to area. We also claim that Pv,w(t, a)
uniquely counts the contributions from dinv pairs (i, j) with either γi = γj = 0 or γi = 0
and γj = 1. For each such pair, say that the pair projects onto j if γi = γj = 0 or i if 
γi = 0 and γj = 1. Then every such pair projects onto a unique i such that γi = 0, which 
is equivalent to vi = 1. Furthermore, the number of pairs projecting onto a particular i
is 0 if πi = 1 and

#{j < i : γj = 0} + #{j > i : γj = 1} = #{j < i : uj = 1} + #{j > i : uj = 2}
(24)



A.T. Wilson / Journal of Combinatorial Theory, Series A 154 (2018) 129–144 135
if πi = 0. Hence, Pv,w(t, a) accounts for the contribution all such dinv pairs. By induction, 
	w(q, t, a) accounts for all other area and all other dinv pairs.

For example, if v = 100100 and γ = 013021 then we have the (currently unlabeled) 
diagram

?
?

?

?

?
?

where the question marks will be replaced by labels 0 and 1. We noted above that 
u = 120102 and w = 1001. This example contributes to the term

q6−2−2P100100,1001(t, a)	1001(q, t, a) = q2(t2 + a)2	1001(q, t, a). (25)

in the recurrence for 	v(q, t, a). The q2 term comes from the lowest boxes in columns 3 
and 5, since we know that these boxes will not contain any labels (and will therefore 
contribute powers of q). The t2 + a factors correspond to placing a 0 or 1 in columns 1 
and 4. If we place a 0 in column 1, then we will have dinv pairs (1, 2) and (1, 6) that 
both project onto 1. If we place a 1 in column 1, no dinv pairs will project onto column 1 
but we will get another power of a. Similarly, if column 4 contains a 0 then we get 
dinv pairs (1, 4) and (4, 6) which project onto 4; otherwise, no dinv pairs project onto 
column 4. Finally, the 	1001(q, t, a) accounts for everything that occurs in higher rows of 
the diagram.

The v = 0n case of the result follows from Lemma 2.1. �
For the sake of comparison with [6], we give a simplified formula that directly computes 

fv(q, t, a) from Theorem 2.1. Given γ ∈ Nn and 1 ≤ i ≤ n, let

dinvi(γ) = #{j < i : γj = γi} + #{j > i : γj = γi + 1}. (26)

Corollary 2.1.

fv(q, t, a) =
∑
γ∈N

n

γi=0⇔vi=1

qarea(γ)
n∏

i=1

(
a + tdinvi(γ)

)
(27)

where, as before, area(γ) = |γ| − #{1 ≤ i ≤ n : γi > 0}.

If v = 0n and a = 0, this is exactly Theorem 1.9 in [6].
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3. A finite formula

Although the combinatorial definition of Lv is straightforward, it is not computation-
ally effective2 since it is a sum over infinitely many words γ ∈ Nn. We rectify this issue 
in Theorem 3.1 below. The idea is to compress the vectors γ while altering the statistics 
so that the link polynomial Lv is not changed.

Definition 3.1. A word γ ∈ Nn is a Fubini word if every integer 0 ≤ k ≤ max(γ) appears 
in γ.

For example, 41255103 is a Fubini word but 20141022 is not a Fubini word, since it 
contains a 4 but not a 3. We call these Fubini words because they are counted by the Fu-
bini numbers ([19], A000670), which also count ordered partitions of the set {1, 2, . . . , n}. 
We will actually be interested in certain decorated Fubini words.

Definition 3.2. Given v ∈ {0, 1}n, we say that a Fubini word γ is associated with v if 
either

• v = 0n and the only zero in γ occurs at γ1, or
• v �= 0n and γi = 0 if and only if vi = 1.

Definition 3.3. A barred Fubini word associated with v is a Fubini word γ associated with 
v where we may place bars over certain entries. Specifically, the entry γj may be barred 
if

(1) γj > 0,
(2) γj is unique in γ, and
(3) for each i < j we have γi < γj , i.e. γj is a left-to-right maximum in γ.

We denote the collection of barred Fubini words associated with v by Fv.

For example,

F0 = {0} (28)

F00 = {01, 01} (29)

F000 = {011, 012, 012, 012, 012, 021, 021}. (30)

The sequence |F0n | for n ∈ N begins 1, 1, 2, 7, 35, 226, . . . and seems to appear in the 
OEIS as A014307 [19]. One way to define sequence A014307 is that it has exponential 
generating function

2 There are also infinitely many π ∈ P
n, but this problem can be rectified with standardization [9].
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v Fv

111 000
011 100, 100
101 010, 010
110 001, 001
001 110, 120, 120, 120, 120, 210, 210
010 101, 102, 102, 102, 102, 201, 201
100 011, 012, 012, 012, 012, 021, 021
000 011, 012, 012, 012, 012, 021, 021

Fig. 3. We have listed the barred Fubini words Fv for each v ∈ {0, 1}3.

√
ez

2 − ez
. (31)

This sequence is given several combinatorial interpretations in [17]. It would be interest-
ing to obtain a bijection between F0n and one of the collections of objects in [17]. See 
Fig. 3 for more examples of barred Fubini words.

Given a barred Fubini word γ and a word π ∈ Pn, we modify the dinv statistic slightly:

dinv(γ, π) = #{1 ≤ i < j ≤ n : γi = γj , πi > πj} (32)

+ #{1 ≤ i < j ≤ n : γi + 1 = γj , πi < πj , γj is not barred}.

We also let bar(γ) be the number of barred entries in γ. We have the following result.

Theorem 3.1. For v ∈ {0, 1}n,

Lv =
∑
γ∈Fv

π∈P
n

qarea(γ)+bar(γ)tdinv(γ,π)(1 − q)− bar(γ)−χ(v=0n)xπ (33)

where χ of a statement is 1 if the statement is true and 0 if it is false.

Proof. Assume, for now, that v �= 0n. Let F (0)
v denote the set of all γ ∈ Nn such that 

γi = 0 if and only if vi = 1. These are exactly the γ that appear in the definition 

of Lv, Definition 2.2. Note that F(0)
v is not a subset of Fv; rather, Fv ⊆ F (0)

v . For each 

1 ≤ k ≤ n, let F (k)
v be the set of vectors γ ∈ Nn decorated with bars such that

(1) γi = 0 if and only if vi = 1,
(2) each i ∈ {0, 1, . . . , max(γ)} such that i ≤ k appears in γ,

where γj ∈ F (k)
v may be barred if

(1) 0 < γj ≤ k,
(2) γj is unique in γ, and
(3) for each i < j we have γi < γj , i.e. γj is a left-to-right maximum in γ.
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Note that F (0)
v ⊇ F (1)

v ⊇ . . . ⊇ F (n)
v = Fv; in particular, this means F (n)

v is finite. The 

goal of the proof is to interpolate from F(0)
v to F (n)

v = Fv. For convenience, we set

wtγ,π = wtγ,π(x; q, t) = qarea(γ)+bar(γ)tdinv(γ,π)(1 − q)− bar(γ)xπ, (34)

where the dinv statistic is the one we defined for barred Fubini words. Our goal is to 
show that ∑

γ∈F(k−1)
v

π∈P
n

wtγ,π =
∑

γ∈F(k)
v

π∈P
n

wtγ,π (35)

for each 1 ≤ k ≤ n. Then we can chain together these identities for k = 1, 2, . . . , n to 
obtain the desired result.

First, we remove the intersection F(k−1)
v ∩F (k)

v from both summands in (35) to obtain 
the equivalent statement ∑

γ∈F(k−1)
v \F(k)

v
π∈P

n

wtγ,π =
∑

γ∈F(k)
v \F(k−1)

v
π∈P

n

wtγ,π . (36)

Now we wish to describe the γ that appear in the left- and right-hand summands of (36). 
γ ∈ F (k−1)

v is not in F (k)
v if and only if k < max(γ) and γ does not contain a k. On the 

other hand, γ ∈ F (k)
v is not in F (k−1)

v if and only if it contains a single k and that k is 
barred. This allows us to rewrite (36) as∑

γ∈F(k−1)
v

k/∈γ
k<max(γ)

π∈P
n

wtγ,π =
∑

γ∈F(k)
v

k∈γ
π∈P

n

wtγ,π . (37)

Specifically, for each subset S ⊆ {1, 2, . . . , n} we will show that∑
γ∈F(k−1)

v
k/∈γ

k<max(γ)
γi<k⇔i∈S

π∈P
n

wtγ,π =
∑

γ∈F(k)
v

k∈γ
γi<k⇔i∈S

π∈P
n

wtγ,π . (38)

Then summing over all S will conclude the proof.
We consider the left-hand side of (38). Note that there cannot be any dinv between 

columns i and j if γi < k and γj > k. In this sense, the columns i with γi < k are 
independent of the columns j with γj > k. This allows us to write the left-hand side of 
(38) as a product

qn−|S|L0n−|S|Fv,S (39)
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where Fv,S is a certain symmetric function that accounts for all contribution to the 
weights coming from columns i ∈ S. Since k < max(γ), we know that |S| < n. The 
factor of q appears because each of the entries j /∈ S has an empty box in the diagram 
that is not counted by either of the other factors. Now we can use Lemma 2.1 to rewrite 
this product as

qn−|S|

1 − q
L10n−|S|−1Fv,S . (40)

We switch our attention to the right-hand side of (38), which we would like to show 
is equal to (40). Let m be minimal such that m /∈ S in the right-hand side of (38), i.e. 
γm ≥ k. Since k ∈ γ, such an m must exist. Furthermore, we must have γm = k. We 
know that k ∈ γ, and the furthest left it can appear in γ is in column m. If γm = k

without a bar or γm > k then k cannot appear to the right of column m by conditions 
(2) and (3) for the barring of entries in F(k)

v .
We note that, by the definition of dinv for barred words, there are no dinv pairs (i, j)

with i ∈ S and j /∈ S, i.e. γi < k and γj ≥ k for γ that appear in the sum on the 
right-hand side of (38). Hence, the contributions from columns in S will be independent 
of the contributions from columns not in S. The columns in S contribute Fv,S . The 
columns j /∈ S give

qn−|S|−1 q

1 − q
L10n−|S|−1 = qn−|S|

1 − q
L10n−|S|−1 . (41)

To see this, note that we have one fewer extra box than in the previous case; specifically, 
we have lost the extra box in column m, yielding a factor of qn−|S|−1. We have a new 
bar in column m which contributes a factor of q/(1 − q). Multiplying these terms with 
Fv,S , we obtain (40).

Finally, we must address the case v = 0n. In this case, we immediately use L0n =
(1 − q)−1L10n−1 and then proceed as above. This is why Fubini words associated with 
0n have an “extra” zero at the beginning. This also slightly adjusts the weight of the 
summands, explaining the χ(v = 0n) part of the theorem. �

As in Section 2, we give a formula for computing fv(q, t, a) directly. Given a barred 
Fubini word γ, we define

dinvi(γ) = #{j < i : γj = γi} + #{j > i : γj = γi + 1, γj is not barred}. (42)

Corollary 3.1.

fv(q, t, a) =
∑
γ∈Fv

qarea(γ)+bar(γ)(1 − q)− bar(γ)−χ(v=0n)
n∏

i=1

(
a + tdinvi(γ)

)
. (43)
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t2

t qt q2t

1 q q2 q3

Fig. 4. This is the Ferrers diagram of the partition μ = (4, 3, 1). In each cell we have written the monomial 
qitj that corresponds to the cell, yielding Bμ = {1, q, q2, q3, t, qt, q2t, t2}.

4. Conjectures

So far, we have used the inner product 〈Lv, en−dhd〉 to compute fv(q, t, a); one might 
wonder if there is any value in studying the full symmetric function Lv. In this section, 
we conjecture that the link symmetric function Lv is closely related to the combinatorics 
of Macdonald polynomials, hinting at a stronger connection between Macdonald poly-
nomials and link homology. Following [6], we must first define a “normalized” version of 
the link symmetric function Lv.

Definition 4.1.

L̃v = L̃v(x; q, t) = (1 − q)n−|v|Lv(x; q, t). (44)

We could also define L̃v in terms of diagrams; each box that contains a number con-
tributes an additional factor of 1 − q. Theorem 3.1 implies that L̃v has coefficients in 
Z[q, t], whereas the coefficients of Lv are elements of Z[[q, t]]. We conjecture that the nor-
malized link symmetric function L̃v is closely connected to the Macdonald eigenoperators 
∇ and Δ.

The modified Macdonald polynomials H̃μ form a basis for the ring of symmetric 
functions with coefficients in Q(q, t). They can be defined via triangularity relations or 
combinatorially [11,9]. Given a partition μ, let Bμ be the alphabet of monomials qitj
where (i, j) ranges over the coordinates of the cells in the Ferrers diagram of μ. We 
compute an example in Fig. 4.

Given a symmetric function F in variables x1, x2, . . . and a set of monomials A =
{a1, a2, . . . , an}, we let F [A] be the result of setting xi = ai for 1 ≤ i ≤ n and xi = 0 for 
i > n. Then we define two operators on symmetric functions by setting, for μ � n,

ΔF H̃μ = F [Bμ] H̃μ (45)

∇H̃μ = ΔenH̃μ (46)

and expanding linearly. Note that, for μ � n, en[Bμ] is simply the product of the n
monomials in Bμ; we will sometime write Tμ for the product en[Bμ].
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Conjecture 4.1.

∇p1n = L̃0n (47)

Δen−1p1n =
∑

v∈{0,1}n

|v|=1

L̃v (48)

L̃v0 = ∇p1∇−1L̃v. (49)

In fact, the first two conjectures follow from the third.

Proposition 4.1. (49) implies both (47) and (48).

Before proving Proposition 4.1, we should mention that Eugene Gorsky first noticed 
that the identity

d∑
a=0

〈∇p1n , en−dhd〉 ad = (1 − q)nf0n(q, t, a) (50)

seemed to hold and communicated this observation to the author via Jim Haglund. 
Gorsky’s conjectured identity is a special case of Conjecture 4.1. It is also interesting to 
note that the operator in (49) appears in the setting of the Rational Shuffle Conjecture 
as −Q1,1 [4].

Proof. We prove that (49) implies (47) and (48). The fact that (49) implies (47) is clear. 
For the second implication, consider v ∈ {0, 1}n with |v| = 1. Say k is the unique position 
such that vk = 1. By (47), L̃0k−1 = ∇p1k−1 . By definition, L̃0k−11 considers γ such that 
γi = 0 if and only if i = k. It follows that πk cannot be involved in any dinv pairs, and 
that γk contributes no new area. Therefore

L̃0k−11 = p1∇p1k−1 . (51)

Using (47) again, we get

L̃0k−110n−k = ∇p1n−k∇−1p1∇p1k−1 . (52)

We define the Macdonald Pieri coefficients dμ,ν by

p1H̃ν =
∑
μ←ν

dμ,νH̃μ, (53)

where the sum is over partitions μ obtained by adding a single cell to ν. Given a standard 
tableau τ , let μ(i) be the partition obtained by taking the cells containing 1, 2, . . . , i in τ . 
Then each μ(i+1) is obtained by adding a single cell to μ(i). Let dτ denote the product 
of the Macdonald Pieri coefficients

dτ = dμ(1),∅dμ(2),μ(1) . . . dμ(n),μ(n−1) . (54)
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Now we can express the right-hand side of (52) as

∇p1n−k∇−1p1∇
∑

ν�k−1

∑
τ∈SYT(ν)

dτ H̃ν (55)

= ∇p1n−k∇−1p1
∑

ν�k−1

∑
τ∈SYT(ν)

dτTνH̃ν (56)

= ∇p1n−k

∑
λ�k

∑
τ∈SYT(λ)

dτBλ(τ, k)−1H̃λ (57)

where by Bλ(τ, n) we mean the monomial qitj associated to the cell containing n in τ . 
Completing the computation, we get∑

μ�n
H̃μ

∑
τ∈SYT(μ)

dτ
∏
i�=k

Bμ(τ, i). (58)

Summing over all k, we obtain Δen−1p1n . �
As an example of our conjecture, we can use Sage to compute

〈∇p1,1, p1,1〉 = 1 + q + t− qt. (59)

This expression should equal 
〈
L̃00, p1,1

〉
by Conjecture 4.1. To compute this inner prod-

uct using Theorem 3.1, we will use the fact that the scalar product with p1n can be 
computed by considering only the permutations π of {1, 2, . . . , n}, as discussed in Chap-
ter 6 of [9]. We consider the barred Fubini words 01 and 01, each of which can receive 
labels π = 12 or 21. The corresponding diagrams are

1
2

2
1

1
2

2
1

where we have moved the bars from γi to the corresponding πi. The weights of these 
diagrams coming from Theorem 3.1 are

t

1 − q

1
1 − q

q

(1 − q)2
q

(1 − q)2 (60)

respectively. After multiplying by the normalizing factor (1 − q)2 to go from L00 to L̃00, 
we sum the resulting weights to get

(1 − q)t + 1 − q + q + q = 1 + q + t− qt (61)

as desired.
After reading an earlier version of this paper, François Bergeron contacted the author 

with the following additional conjectures.
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Conjecture 4.2 (Bergeron, 2016).

Lv0 = L1v + qL0v (62)

L0n =
∑

v∈{0,1}k

qn−|v|Lv0n−k (63)

t (Lu011v − Lu101v) = Lu101v − Lu110v (64)

L̃0a1b0c = ∇p1c∇−1H̃1b∇p1a (65)

L1a01b = ta − 1
ta+b − 1

[
∇p1∇−1, H̃1a+b

]
+ H̃1a+bp1 (66)

where the bracket represents the Lie bracket and operators are applied to 1 if nothing 
is explicitly specified. Bergeron also observed that Lv(x; q, 1 + t) is e-positive. (For more 
context on this last statement, see Section 4 of [2].)

It is clear that (62) implies (63). We do not know of any other relations between these 
conjectures. We close with two more open questions.

(1) Is there a Macdonald eigenoperator expression for L̃v for other v? Perhaps we can 
use ideas from the Rational Shuffle Conjecture [4], recently proved by Mellit [16].

(2) Can we generalize our conjecture for ∇p1n to “interpolate” between our conjecture 
and the Shuffle Theorem [5], or maybe the Square Paths Theorem [18]?
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