期刊论文详细信息
JOURNAL OF COMBINATORIAL THEORY SERIES A 卷:124
Laurent polynomials, Eulerian numbers, and Bernstein's theorem
Article
Liu, Ricky Ini
关键词: Eulerian number;    Bernstein's theorem;    Hypersimplex;   
DOI  :  10.1016/j.jcta.2014.02.003
来源: Elsevier
PDF
【 摘 要 】

Erman, Smith, and Varilly-Alvarado (2011) showed that the expected number of doubly monic Laurent polynomials f (z) = z(-m) + a(-m+1)z(-m+1) + ... + a(n-1)z(n-1) + z(n) whose first m + n - 1 powers have vanishing constant term is the Eulerian number < m+n-1 m-1 >, as well as a more refined result about sparse Laurent polynomials. We give an alternate proof of these results using Bernstein's theorem that clarifies the connection between these objects. In the process, we show that a refinement of Eulerian numbers gives a combinatorial interpretation for volumes of certain rational hyperplane sections of the hypercube. (C) 2014 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcta_2014_02_003.pdf 238KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次