期刊论文详细信息
Anais da Academia Brasileira de Ciências | |
A duality result between the minimal surface equation and the maximal surface equation | |
Luis J. AlÍas2  Bennett Palmer1  | |
[1] ,Universidad de Murcia Departamento de Matemáticas Murcia,Spain | |
关键词: Minimal surface equation; Maximal surface equation; Bernstein's theorem; Calabi-Bernstein's theorem; Equações de superfícies mínimas; Equações de superfícies máximas; teorema de Bernstein; teorema de Calabi-Bernstein; | |
DOI : 10.1590/S0001-37652001000200002 | |
来源: SciELO | |
【 摘 要 】
In this note we show how classical Bernstein's theorem on minimal surfaces in the Euclidean space can be seen as a consequence of Calabi-Bernstein's theorem on maximal surfaces in the Lorentz-Minkowski space (and viceversa). This follows from a simple but nice duality between solutions to their corresponding differential equations.
【 授权许可】
CC BY
All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202005130000132ZK.pdf | 29KB | download |