期刊论文详细信息
JOURNAL OF GEOMETRY AND PHYSICS 卷:92
Maximal surface equation on a Riemannian 2-manifold with finite total curvature
Article
Rubio, Rafael M.1  Salamanca, Juan J.1 
[1] Univ Cordoba, Dept Matemat, E-14071 Cordoba, Spain
关键词: Maximal surface equation;    Finite total curvature;    Lorentzian geometry;   
DOI  :  10.1016/j.geomphys.2015.02.011
来源: Elsevier
PDF
【 摘 要 】

The differential equation of maximal surfaces on a complete Riemannian 2-manifold with finite total curvature is studied. Uniqueness theorems that widely extend the classical Calabi-Bemstein's theorem in non-parametric version, as well as previous results on complete maximal graphs into Lorentzian warped products, are given. All entire solutions of maximal equation in certain natural Lorentzian warped product, as well as non-existence results, are provided. (C) 2015 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_geomphys_2015_02_011.pdf 261KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次