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Abstract

The differential equation of maximal surfaces on a complete Riemannian 2-manifold
with finite total curvature is studied. Uniqueness theorems that widely extend the classical
Calabi-Bernstein’s theorem in non-parametric version, as well as previous results on com-
plete maximal graphs into Lorentzian warped products, are given. All entire solutions of
maximal equation in certain natural Lorentzian warped product, as well as non-existence
results, are provided.

1 Introduction

The classical Calabi-Bernstein’s theorem for maximal surfaces in the 3-dimensional Lorentz-
Minkowski space L3, in non-parametric version, states that the only entire solutions to the
maximal surface equation

D
div [ ———— ) =0, |Du/<1 (1)
/1 —|Dul?

on the Euclidean plane R? are affine functions.

A maximal surface in L3 is a spacelike surface with zero mean curvature. The term
spacelike means that the induced metric from the ambient Lorentzian metric is a Riemannian
metric on the surface. The terminology maximal comes from a variational problem, since
theses surfaces locally maximize area among all nearby surfaces having the same boundary.
Besides their mathematical interest, maximal surfaces and, more generally, spacelike surfaces
with constant mean curvature are also important in General Relativity (see, for instance,
[14]).

A singular fact in Lorentzian products (or warped products) in contrast to the case of graph
into complete Riemannian products (or warped products) is that an entire spacelike graph
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in the Lorentzian case is not necessarily complete, in the sense that the induced Riemannian
metric is not necessarily complete (see [1, Section 4]).

The theorem aforementioned is a relevant uniqueness result, which was first proved by
Calabi [6] and later extended for maximal hypersurfaces in L™ by Cheng and Yau [7]. It can
also be stated in terms of the local complex representation of the surface [11], [8]. Even two
different types of direct simple proofs are given in [17] and [18].

In [12], the authors give new examples of non-parametric Calabi-Bernstein type problems
for warped Lorentzian products, whose warping function is non-locally constant and its fiber
is the Euclidean plane. Obviously the Calabi-Bernstein theorem is not included in this case.
A new version of non-parametric Calabi-Bernstein type theorem in the case of a Lorentzian
product R x F, where F' denotes a Riemannian 2-manifold, with non-negative curvature and
positive at some point, has been given in [1] and [2]. Recently, another Calabi-Bernstein type
results in the more general ambient of a warped Lorentzian product are given in [4] and [5].

In this work we deal with entire solutions of the maximal surface equation on a complete
2-dimensional Riemannian manifold with finite total curvature. Recall that a complete Rie-
mannian surface has finite total curvature if the integral of the absolute value of its Gaussian
curvature is finite (Section 2.4). In fact, consider the following nonlinear elliptic differential
equation, in divergence form:

iv Du _N f'(u) | Du |?
d (f(u) f(u)2— | Du |2> F@)?— | Du |2 (2 + Tl ) (E.1)
| Du < fo) s

where f is a smooth real-valued function defined on an open interval I of the real line R, the
unknown u is a function defined on a domain €2 of a non-compact complete Riemannian surface
(F, g) with finite total curvature, «(£2) C I, D and div denote the gradient and the divergence
of (F,g) and | Du |?:= g(Du, Du). The constraint (E.2) is the ellipticity condition. We are
mainly interested in uniqueness and non-existence results for entire solutions (i.e. defined on
all F') of equation (E).

The solutions of (E) are the extremals under interior variations for the functional

W / f(u)/F@)P— ] Du [P dA,

where dA is the area element for the Riemannian metric g, which acts on functions u such
that w(Q) C I and | Du |< f(u).

This variational problem naturally arise from Lorentzian geometry. In order to see this,
consider the product manifold M := I x F' endowed with the Lorentzian metric

(,)=—mi(dt*) + f(m1)*m(9), (2)

where 77 and 7 denote the projections from M onto I and F, respectively. The Lorentzian
manifold (M = I xs F,(,)) is a warped product, in the sense of [15, p. 204], with base
(I,—dt?), fiber (F,g) and warping function f. Any warped product I X F possesses an
infinitesimal timelike conformal symmetry (see Subsection 2.1) which is an important tool in
this paper.



For each u € C*(Q), u(Q2) C I, the induced metric on 2 from the Lorentzian metric (2),
via its graph ¥, = {(u(p),p) : p € Q} in M, is written as follows

gu = —du® + f(u)?g,

and it is positive definite, i.e. Riemannian, if and only if u satisfies | Du |< f(u) everywhere on
Q2. When g, is Riemannian, f(u)\/f(u)?— | Du |?> dA is the area element of (€2, g,,). Therefore
(E.1) of (E) is the Euler-Lagrange equation for the area functional, its solutions are spacelike
graphs of zero mean curvature in M, and this equation is called the maximal surface equation
in M.

If we denote by N the unit normal vector field N on %, such that (N,0;) > 1 on X,
where 0, := 0/0t € X(M), then

M f(u}f_(u)pu P (1’ f<i>2D“>’

and the hyperbolic angle  between —0; and N is given by

f(w)
VIW?=TDu >

Observe that when I = R, F = R? and f = 1, the equation (E) is the maximal surface
equation in 3. Of course, the Euclidean plane R? has finite total curvature, but note that any
complete Riemannian surface whose curvature is non-negative out a compact set has finite
total curvature (see section 2.4). On the other hand, examples of complete minimal surfaces
in R? with finite total curvature are known (see, [9]). Examples in a different ambient space
can be seen in [16].

In this work, we give new results on uniqueness and non-existence of solutions of the
equation (E) on a complete Riemannian surface with finite total curvature. Our results
widely extend and improve the non-parametric following results, [12, Th. A and Th. B], [1,
Th. 4.3 and Cor. 4.4], [2, Cor. 8], [4, Th. 6.2 and Th. 6.3] and [5, Th. 4.2 and Cor. 4.3].
Moreover, the Calabi-Bernstein’s Theorem is included as a particular case (see Section 4).

(N, ) = coshf =

2 Preliminaries

2.1 The infinitesimal timelike conformal symmetry

Let f be a positive smooth function defined on an open interval I of R and (F, g) a Riemannian
surface. Consider a warped product M = I x; F' endowed with the Lorentzian metric (2).
The unit timelike vector field 0, := 9/t € X(M) determines a time-orientation on M. We
consider the vector field  := f(mr) 0, which is timelike and, from the relationship between
the Levi-Civita connections of M and those of the base and the fiber [15, Cor. 7.35], satisfies

Vx&=f(m) X (3)

for any X € X(M), where V is the Levi-Civita connection of the metric (2). Thus, ¢ is
conformal with L¢(, ) =2 f'(7r) (, ) and its metrically equivalent 1-form is closed.



2.2 The null convergence energy condition

We are interested in graphs immersed in Lorentzian warped product spaces satisfying certain
natural energy condition, which turns out to have an expression in terms of the curvature of
its fiber (F,g) and the warping function f.

Recall that a Lorentzian manifold obeys the null convergence condition (NCC) if its Ricci
tensor Ric satisfies

Ric(Z,Z) > 0,
for any null vector Z, i.e. Z # 0 such that (Z,Z) = 0. It is easy to check that a Lorentzian
warped product space I Xy F' with a 2-dimensional fiber obeys NCC if and only if
K"(r,)
12
where K denotes the Gaussian curvature of the fiber.
Recall that any solution to the Einstein’s equation obeys the NCC condition.

— (log f)" > 0, (4)

2.3 The restriction of the warping function on a spacelike surface

Let x : S — M be a (connected) spacelike surface in M; that is, x is an immersion and
induces a Riemannian metric on the 2-dimensional manifold S from the Lorentzian metric
(2). As usual, we agree to represent the induced metric with the same symbol as the one
used in (2). Then the time-orientability of M allows us to consider N € X+(S) as the only,
globally defined, unit timelike normal vector field on S in the same time-orientation of —d.
Thus, from the wrong way Cauchy-Schwarz inequality, (see [15, Prop. 5.30], for instance)
we have (N,0;) > 1 and (N,d;) = 1 at a point p if and only if N(p) = —d(p). In fact,
(N,0;) = cosh@, where 6 is the hyperbolic angle, at each point, between the unit timelike
vectors —0; and N. From now on, we will refer to 6 as the hyperbolic angle between S and 0.
We will call spacelike slice to a spacelike surface x such that 7 oz is a constant. A spacelike
surface is a spacelike slice if and only if it is orthogonal to 0; or, equivalently, orthogonal to
¢. Denote by 9, := 9; + (N, ;)N the tangential component of d; on S. It is not difficult to
see that

Vr = -9/, (5)

where V7 is the gradient of 7 := mrox on (5, (,)). Now, from the Gauss formula, taking into
account ¢ = (1), and (5), the Laplacian of 7 in (S, (,)) is given by

f'(r)
f(7)

where f(7) := for, f'(r):= f'or and the function H := —(1/2) trace(A) is called the mean
curvature of S relative to N, where A is the shape operator associated to N. A spacelike
surface with constant H is called a constant mean curvature spacelike surface. Note that,
with our choice of N, the shape operator of the spacelike slice t = to is A = (f(t0)/f(to)) I
and H = —f'(to)/f(ty). Therefore the spacelike slices are totally umbilical constant mean
curvature surfaces. When the spacelike slice is maximal, then it is totally geodesic. From (6),
it is easy to obtain

Nr = — {2+ |V |2 } —2H (N, 8,), (6)

Af(r) = =2 7oy T f(7)(og f)'(r) | VT |* =2f'(T)H g(N, ). (7)



On the other hand, in [4, For. 13] is computed the Gaussian curvature K of a spacelike
surface (5, (,)) in M. In particular, if S is maximal we get

/()2 F(r F(r
];((T))2 + {Kf(g)g) — (log f)”(T)} | V7 |? +7Kf((7)§) + %trace(AQ), (8)

where K" denotes the Gaussian curvature of the fiber (F,g). If we consider the function
(¢,N) on (S,(,)), it is easy to see [4, For. 16,17,18] that

K =

F(r
A& = { F5E o))} 1 [ (V.) + tacel4%) V. ), 0
or equivalently
es 2 F T
A(N,¢) = {K — Jif((T))Q — Kf(g_)g) + %trace(A%}(N,ﬁ). (10)

2.4 Curvature and parabolicity

Recall that a complete Riemannian surface (%, g, ) is parabolic if each non-negative superhar-
monic function on ¥ must be constant. On the other hand, a complete Riemannian surface
(X2, 95) is said to have finite total curvature if the negative part of its Gaussian curvature is
integrable. More precisely, if K(p), p € X, denotes the Gaussian curvature on X, then ¥ has
finite total curvature if

/maX(O, —K)dA,, < oo, (11)
2

where the integral is defined with a compact exhaustion procedure.

It is well know (see [13]) that a complete Riemannian surface (¥,¢,) with finite total
curvature is parabolic.

Huber [10] showed that if [, max(0,—K)dA, < oo then ¥ must be conformally equiv-
alent to a compact Riemannian surface with finite punctures. Moreover, the Cohn-Vossen
inequality,

/ KdA, < 2rX(%),
by

is satisfied. Since K = max{K,0} — max{—K,0} := K, — K_, the Cohn-Vossen inequality
implies that

/ Ky dA, < / K_dA, +2rnX(%2).
= =
On the other hand, Huber’s Theorem asserts that the right hand side is finite. Hence,
/ max(0, —K) dA, < oo
X

implies
/ |K|dA,, < .
pX

This fact justifies the term total curvature.



3 On the Gaussian curvature of certain conformal graphs

Let (F,g) be a 2-dimensional (non-compact) complete Riemannian manifold and let
f I — R be a positive smooth function. For each u € C°°(F') such that u(F) C I we can
consider its graph ¥, = {(u(p),p) : p € F'} in the Lorentzian warped product M = I x¢ F.
The graph of u inherits a metric (3, (,)) from M, represented on F by g, := —du®+ f(u)?g,
which is Riemannian if and only if u satisfies g(Du, Du) < f(u)? everywhere on F, where Du
denotes the gradient of u in (F,g). In this case, the graph is a spacelike surface. Note that
T(u(p),p) = u(p) for any p € F, and so 7 and u can be naturally identified by the isometry
between (X, (,)) and (F,g,). Analogously, the differential operators V and A in (2,,(,))
can be identified with those ones V,, and A, in (F, gy,).
On the manifold F' we consider the following Riemannian metric

g, = f(u)2 cosh? 0 gu, (12)
where £ )2
U
f(u)coshf = TP | Du

and | Du |*:= g(Du, Du). Therefore, if € := Inf(f) > 0 we get the following inequality
L' > L,

where L’ and L denote the lengths of a curve in F' with respect to g, and g, respectively.
Consequently, g/, is complete whenever g is complete.

Now, suppose that Supf(u) < co. Put A = Supf(u) and consider the new Riemannian
metric

gi = (f(u) cosh 6+ A)’g, (13)

on F'.

The completeness of the metric (12) assures that g is also complete. Moreover, it has the
advantage over g, that we can control its Gaussian curvature under reasonable assumptions.
In order to concrete this assertion, let K} and K, denote the Gaussian curvatures of the Rie-
mannian metrics g, and g, respectively. From (13) and using the relation between Gaussian
curvatures for conformal changes (see [3, Ch.1, Section J], we have

K, — (f(u)cosh @ + \)2K = A, log(f(u)coshd + ). (14)

Lemma 3.1 Suppose that (F,g) is complete, with finite total curvature. If Inff > 0, Supf <
oo and (log f)"(u) < 0, then the complete Riemannian surface (F,g) has finite total curva-
ture.

Proof. Taking into account (8) and (9), we have

F F
Ay log(f(u)cosh 0+\) < m {(Ku - %)f(u) cosh 6 + (Ku — cosh? ef[((u)g>)‘}
f(u)cosh @ + \cosh? @
< Kot F(w)2(f(u)cosh @ + N)3"



Making use of (14) and since the Riemannian area elements of the metrics g and g;; satisfy

dAY = (f(u) cosh @ + \)2 f(u)? b

15
cosh 6 ’ (15)
we have
2
/ max(—K,0)dA; < / max(— K, 0) I w) cosh2(9 +Aogh J dA < oo.
f(u) cosh” 6 4+ \cosh @
where we have also used that f(u) is bounded with Inf f(u) > 0. O

Lemma 3.2 Suppose that (F,g) is complete, with finite total curvature. If Inff > 0, Supf <
oo and the inequality % — (log f)"(u) > 0 holds on F, then the complete Riemannian
surface (F,g}) has finite total curvature.

Proof. Again, from (8) and (9) we get,

1 Kt Kt
Ayl h — Ky — — h Ky, — ——
og(f(u)cosh + \) < u )cosh0+)\{( f(u)z)f(u)cos 9—|—< f(u)2>>\}
KF
<K, ——.
B fu)?
Using (14) and the equality (15), we obtain

/max —K;,0)dA;, < /maX KFO)—dA</maX ~K*,0)dA < .

4 Main results
Under a convexity assumption on the warping function we obtain (compare with [12, Th. A]),

Theorem 4.1 If the smooth function f is non-locally constant, Inff > 0, (log f)” < 0 and
the constant function u = wg is a solution to the equation (E) on a complete Riemannian
surface (F,g), with finite total curvature, then it is the only solution to this equation.

Proof. Since (log f)” < 0 and f’(ug) = 0, the function f has a global maximum at ug and

this is the only zero of f’. We can apply the Lemma 3.1 and as a consequence we know that

the complete Riemannian surface (F,g;) has finite total curvature. On the other hand, if u
is an entire solution to (E), from (7) we obtain

' (w)?

Bufu) = 275

Taking into account the invariance of superharmonic functions by conformal changes of metric,

the positive function f(u) is superharmonic on the parabolic Riemannian surface (F)gj).
Hence, since f is non-locally constant, we conclude that « must be constant.

+ f(u)(log f)" (w)|Vyul* < 0. (16)

O
The main assumptions in Theorem 4.1 cannot be removed, as shows the following example,



Example 4.2 Consider the hyperbolic plane of Gauss curvature —1, H?, in
L3 = (R3,dx? 4 dy? — dz?) and let f :]0,00[— R be the function defined by f(t) = t.
If Q= {(z,y,2) € L3 : 2 >0, 224+ y?>— 22 <0, }, then it is easy to check that the map
¢ )0, 00[x fH? — Q, ¢(t, (x,y,2)) = (tx,ty,tz) is an isometry. Hence, for each z €]0, 00,
S.o = ¢ H QN {z = 2}) is a maximal surface in ]0,00[x fH?. It can be easily proved that
Sy, is the graph on ]O,oo[xf]H[2 of the function wu,, : H2 — R, u,(z,y,2) = 2. Thus, we
have found a family of (entire) non constant solutions to (E).

Remark 4.3 Note that for any analytical and non-constant function, the non-locally con-
stant assumption on f is satisfied.

If we do not ask the function f to be non-locally constant, the previous theorem is false
as shows the Calabi-Bernstein theorem. Nevertheless, we can enunciate the following result

Corollary 4.4 If Inf > 0, (log f)” < 0 and the constant function u = g is a solution to
Equation (E) on a complete Riemannian surface (F,g), with finite total curvature, then it is
the only solution to this equation, which is bounded from above or from below.

Proof. Let u an entire solution which is bounded from above or from below. As in the previous
proof, f(u) is constant and so A, f(u) = 0. Taking into account the signs of the terms in (16),
we obtain f/(u) = 0. From (6), the function v must be harmonic for the metric g,,. Now, from
the invariance of harmonic functions by conformal changes of metric and the boundedness of
u, the result holds.

O

We have also the following non-existence result (compare with [12, Th. B]),

Theorem 4.5 Let f be a smooth non-locally constant function, with Inff > 0, Supf < oo
and (log )" < 0. If f' does not vanishes at any point, then there exists no entire solution to
Equation (E).

Proof. Any solution must be constant u = ug, and as a direct consequence H = _f(/égf) #0,
which is a contradiction.

O

Now, consider the Lorentzian warped product M = I x; F, where (F,g) is a complete
Riemannian surface, with finite total curvature. Suppose that M obeys the NCC, i.e., satisfies
the inequality (4).

Let ¥, an entire spacelike graph in M. From (9) and (10), the Laplacian of the positive
function f(u)cosh6 in (F,g,) is given by

F
Au(f(u) cosh ) = {% ~ (1o )" (u) } 1V () cosh 6+ %trace(AQ) coshd  (17)
or equivalently
()2 F
Ay (f(u)cosh ) = {Ku - % - % + %traee(AQ)}f(u) cosh 6. (18)

Therefore, under the NCC, we have



Ay (f(u)coshd) > 0.
]
We obtain the following result, which extends and improves [1, Th. 4.3 and Cor. 4.4], [2,
Cor. 8|, [4, Th. 6.2 and Th. 6.3] and [5, Th. 4.2 and Cor. 4.3],

Theorem 4.6 Let M = I xy F a Lorentzian warped product, with fiber (F,g) a complete
Riemannian surface, which has finite total curvature and whose warping function satisfies
Inff > 0 and Supf < oo. If M obeys the NCC, then any entire graph (¥, (,)) must be

totally geodesic. Moreover, if there exists a point p € F such that ]ﬁ% —(log f)"(u(p)) > 0,
then u is constant.

Proof. From Lemma 3.2, we have that (F,g;) is complete with finite total curvature.

Consider the function m on (F,g,). Then

A, (W) L AL(Fw)coshd) + 2!

V. (f (u) cosh 6)? <0
cosh ¢ f(u)2cosh? 6 ( .

f(u)3cosh®6) —

Again, taking into account the invariance of superharmonic functions by conformal changes
of metric, we get a positive superharmonic function on the complete parabolic Riemannian
surface (F,g)) and as a consequence the function f(u)cosh# must be constant. Thus, from
the second term of (17) we obtain that the graph (X, (, )) is totally geodesic. On the other

hand, if moreover there exists a point p € F' such that % — (log f)"(u(p)) > 0, taking

into account the first addend of (17), then there exists an open neighborhood of (p,u(p)) in
Y, which is contained in the complete spacelike graph u = ug, with f’(ug) = 0. As (X4, (, ))
is entire and totally geodesic, it must be to coincide with the totally geodesic spacelike slice
t = ug.

O

Corollary 4.7 (The classical Calabi-Bernstein’s Theorem) The only entire solutions to Equa-
tion (E) on the Euclidean plane when f =1 are the affine functions.

Proof. 1t is enough to observe that for any solution u the function cosh § must be constant.
O

We can enunciate the following uniqueness and non-existence result

Theorem 4.8 Let (F,g) be a complete Riemannian surface with finite total curvature and let
f: I — R be a positive smooth function satisfying Inff > 0, Sup f < oo, Inf K > f(log f)"
(or KT > Sup{f(log f)"}), being the previous inequality strict at some point of F. Then the
only solutions to Equation (E) on F, are the constant functions u = ug such that f'(ug) = 0.

Remark 4.9 Observe that when in the previous theorem the function fsatisfies (log f)” <0
and there is ug € I such that f/(ug) = 0, then the assumption Inff > 0 can be removed and
u = up is the only solution to Equation (E).
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