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Erman, Smith, and Várilly-Alvarado (2011) showed that
the expected number of doubly monic Laurent polynomials
f(z) = z−m + a−m+1z−m+1 + · · · + an−1zn−1 + zn whose
first m + n − 1 powers have vanishing constant term is the
Eulerian number

〈m+n−1
m−1

〉
, as well as a more refined result

about sparse Laurent polynomials. We give an alternate proof
of these results using Bernstein’s theorem that clarifies the
connection between these objects. In the process, we show
that a refinement of Eulerian numbers gives a combinatorial
interpretation for volumes of certain rational hyperplane
sections of the hypercube.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Fix positive integers m and n, and let f(z) = z−m+a−m+1z
−m+1+· · ·+an−1z

n−1+zn

be a doubly monic Laurent polynomial (with complex coefficients). Denote by �fk�, for
all positive integers k, the constant coefficient of the kth power of f(z). Then, motivated
by a result of Duistermaat and van der Kallen [2] and a related question by Sturmfels [9],
Erman, Smith, and Várilly-Alvarado [3] proved the following theorem.
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Theorem 1.1. (See [3, Theorem 2].) The expected number of Laurent polynomials f(z)
such that �f1� = �f2� = · · · = �fm+n−1� = 0 is the Eulerian number

〈m+n−1
m−1

〉
.

Recall that the Eulerian number
〈 n
k

〉
is the number of permutations in Sn with exactly

k descents. (In [3], the “expected number” is computed as the degree of the ideal

Im,n =
〈�

f1�
,

�
f2�

, . . . ,
�
fm+n−1�〉

in C[a−m+1, . . . , an−1], assuming this ideal is zero-dimensional.)
Their proof of this theorem involves computing the Chow ring of an appropriate toric

variety and then showing that the desired answer satisfies a certain recurrence that is also
satisfied by the Eulerian numbers. As a result, the appearance of the Eulerian numbers
using this approach is somewhat mysterious.

In this paper, we will attempt to elucidate this connection by giving an alternate proof
of this result. We will use Bernstein’s theorem (also known as the BKK Theorem after
Bernstein [1], Kušnirenko [5], and Khovanskĭı [4]) to relate the number of solutions of
an appropriate polynomial system to the normalized volume of a hypersimplex, which is
known to be enumerated by an Eulerian number in a natural way (see [8]). We will also,
again following [3], apply a similar technique to show the analogous result for “sparse”
Laurent polynomials. In the process, we will show that the volume of the intersection
of the unit hypercube [0, 1]n with a hyperplane of the form

∑n
i=1 xi = c

d for c
d ∈ Q can

be interpreted combinatorially in terms of a refinement of the Eulerian numbers. (This
refinement is a special case of the one given by the cyclic sieving phenomenon described
in [7].)

2. Preliminaries

In this section, we review the two main ingredients needed for our proof, namely Bern-
stein’s theorem on counting solutions to generic polynomial systems, and the relationship
between Eulerian numbers and hypersimplices.

2.1. Bernstein’s theorem

Given a Laurent polynomial P (x1, . . . , xn) =
∑

cax
a (where xa = xa1

1 xa2
2 · · ·xan

n ), its
support is the set of vectors a = (a1, . . . , an) ∈ Zn such that ca is nonzero. The Newton
polytope ΔP ⊂ Rn of P is the convex hull of the support of P . Bernstein’s theorem gives
a bound on the number of solutions to a polynomial system P1 = P2 = · · · = Pn = 0
that lie in the algebraic torus (C×)n in terms of the Newton polytopes ΔP1 , . . . ,ΔPn

.
More precisely, given polytopes Δ1, . . . ,Δn ⊂ Rn, the volume of the polytope t1Δ1 +

· · ·+tnΔn (where + denotes Minkowski sum) is a polynomial in t1, . . . , tn. Then the mixed
volume MV(Δ1, . . . ,Δn) is the coefficient of t1t2 · · · tn in this polynomial. Bernstein’s
theorem can then be stated as follows.
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Theorem 2.1. (See [1].) Let P1, . . . , Pn ∈ C[x1, . . . , xn] with Newton polytopes Δ1, . . . ,Δn.
Then the polynomial system P1 = P2 = · · · = Pn = 0 has at most MV(Δ1, . . . ,Δn)
isolated solutions in (C×)n. Moreover, if P1, . . . , Pn have generic coefficients given
Δ1, . . . ,Δn, then this bound is exact.

Bernstein’s theorem can be proved, for instance, using toric geometry or homotopy
continuation methods.

2.2. Hypersimplices

Let k and n be positive integers with 0 < k < n. The hypersimplex Δk,n ⊂ Rn is the
polytope

Δk,n =
{
(x1, . . . , xn)

∣∣ x1 + x2 + · · · + xn = k, xi ∈ [0, 1]
}
.

In other words, Δk,n is a slice of the hypercube [0, 1]n by the hyperplane
∑

xi = k. Note
that Δk,n has dimension n − 1, and Δ1,n is the standard (n − 1)-simplex. Normalizing
so that the (n − 1)-dimensional volume of Δ1,n is 1, we have the following theorem of
Laplace.

Theorem 2.2 (Laplace). The normalized volume of Δk,n is the Eulerian number
〈 n−1
k−1

〉
.

Here the Eulerian number
〈 n
k

〉
is the number of permutations in Sn with exactly k

descents. In [8], Stanley gives a simple proof of this result by constructing an explicit
bijection between permutations in Sn−1 with k−1 descents and simplices in a unimodular
triangulation of Δk,n (thereby answering a question of Foata).

3. Proof of the main theorem

We are now ready to give a proof of Theorem 1.1.

Proof of Theorem 1.1. Let N = m + n, and write

f(z) = z−m
N∏
i=1

(1 + riz),

so that
∏

ri = 1. Then the map sending r = (r1, . . . , rN ) to f(z) has degree N !, so it
suffices to show that the expected number of possible r is N ! ·

〈N−1
m−1

〉
.

Since the constant term �fk� is the coefficient of zmk in
∏N

i=1(1 + riz)k, it can be
expressed as a symmetric polynomial Pk(r1, . . . , rN ). The monomial ra1

1 · · · raN

N appears
in Pk with coefficient

∏N
i=1

(
k
ai

)
provided that

∑
ai = mk. Hence the support of Pk is

the set of all exponent vectors a = (a1, . . . , aN ) such that
∑

ai = mk and 0 � ai � k.
Thus the Newton polytope ΔPk

is just kΔm,N .
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By Bernstein’s theorem, the expected number of solutions to the system

P1(r) = · · · = PN−1(r) = r1r2 · · · rN − 1 = 0

(noting that we must have ri ∈ C×) is

MV
(
Δm,N , 2Δm,N , . . . , (N − 1)Δm,N , I

)
,

where I is the segment between (0, 0, . . . , 0) and (1, 1, . . . , 1). This is the coefficient of
t1t2 · · · tN in the volume of

Δ(t1, . . . , tN ) :=
(
t1 + 2t2 + · · · + (N − 1)tN−1

)
Δm,N + tNI.

Let Λ ⊂ RN be the hyperplane
∑

ai = 0, so that Δm,N lies in a hyperplane parallel
to Λ and I is orthogonal to Λ. Then ZN−1 ∩ Λ and (1, 1, . . . , 1) span a lattice that has
index N in ZN . Thus, by Theorem 2.2, Vol(Δm,N + I) = N

(N−1)!
〈N−1
m−1

〉
, and hence

Vol Δ(t1, . . . , tN ) =
(
t1 + 2t2 + · · · + (N − 1)tN−1

)N−1
tN · N

(N − 1)!

〈
N − 1
m− 1

〉
.

The coefficient of t1 · · · tN is then N ! ·
〈N−1
m−1

〉
, as desired. �

4. Refinement

The authors of [3] also count the expected number of Laurent polynomials as in
Theorem 1.1 that are “sparse” in a certain sense. Let us call f(z) d-sparse for some d

dividing N = m + n if the coefficient of zi vanishes unless i ≡ n (mod d). (Note that
every f(z) is 1-sparse.) We will adapt our technique from the previous section to count
the expected number of d-sparse f(z) satisfying Theorem 1.1.

We first define a fractional analogue of the hypersimplex. Given a positive integer n

and a rational number c
d with 0 < c

d < n and gcd(c, d) = 1, define the rational polytope

Δ c
d ,n

=
{

(x1, . . . , xn)
∣∣∣ x1 + · · · + xn = c

d
, xi ∈ [0, 1]

}
.

In other words, Δ c
d ,n

is a slice of the hypercube [0, 1]n by the hyperplane
∑

xi = c
d .

Although Δ c
d ,n

is not an integer polytope, dΔ c
d ,n

is. We will give a combinatorial inter-
pretation for the normalized volume of dΔ c

d ,n
.

We may consider the permutations in Sn as circular permutations of {0, 1, . . . , n}
(that is, permutations of {0, 1, . . . , n} up to cyclic shift). Then a permutation with k

descents corresponds to a circular permutation with k + 1 (cyclic) descents. For any d

dividing n + 1, we let
〈 n
k

〉
d

count the number of these circular permutations fixed by
adding n+1

d modulo n + 1 to each number in the word of the permutation. Note that〈 n 〉 =
〈 n 〉.
k 1 k
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Example. Let n = 5 and k = d = 2. Then
〈 5

2

〉
2 counts the number of circular permuta-

tions of {0, . . . , 5} with 3 descents that are fixed upon adding 6
2 = 3 (modulo 6) to each

number. There are 6 of these: 042315, 015342, 045312, 021354, 051324, and 024351.
Compare this to 2Δ 3

2 ,3, the intersection of the cube [0, 2]3 with the plane x1+x2+x3 =
3, which is a hexagon of normalized volume 6.

Remark. The definition given above is attributed to Postnikov in [3] (cf. [6]). One can
also obtain these numbers using the cyclic sieving phenomenon on permutations with
fixed cycle type and number of exceedances described in [7] as follows: if w = w1 · · ·wn

is a permutation in Sn with k ascents, then (0 w1 w2 · · · wn) is a permutation of
{0, 1, . . . , n} with cycle type λ = (n + 1) and k + 1 exceedances. The cyclic action
generated by conjugation by (0 1 2 · · · n− 1) as in [7] then corresponds to the addition
of a constant modulo n + 1 to each letter of a circular permutation as described in the
previous paragraph.

Analogously to Theorem 2.2, we have the following theorem.

Theorem 4.1. The normalized volume of dΔ c
d ,n

is
〈 dn−1

c−1
〉
d
.

Proof. The polytope dΔ c
d ,n

is defined by 0 � xi � d for 1 � i � n, and
∑

xi = c. We
may slice this polytope by the hyperplanes xi = a for all xi and all integers a. Then each
of the resulting regions is a translate of a hypersimplex: the region containing a general
point (x1, . . . , xn) is a translate of Δk,n by (�x1�, . . . , �xn�), where k = c−

∑
�xi�. Hence,

using Theorem 2.2, the normalized volume of dΔ c
d ,n

equals

n−1∑
k=1

〈
n− 1
k − 1

〉
· #

{
(x1, . . . , xn)

∣∣∣ ∑xi = c− k, xi ∈ {0, 1, . . . , d− 1}
}
.

In other words, the normalized volume of dΔ c
d ,n

is the number of pairs (w, x), where
w ∈ Sn−1 has k − 1 descents and x = (x1, . . . , xn) is an integer point with

∑
xi = c− k

and xi ∈ [0, d − 1]. It therefore suffices to show that the number of such pairs (w, x) is〈 dn−1
c−1

〉
d
. We consider w and x to be periodic sequences with period n (with w0 = 0).

Let p = (p0, p1, . . .) be the sequence such that p0 = 0, and pi − nxi is the smallest
integer congruent to wi modulo n that is larger than wi−1. For instance, for n = 6, if
w = w0w1w2 . . . = 014352 . . . and x = x1x2 . . . = 010021 . . . , then

p = ( 0, 1, 10, 15, 17, 32, 42, 43, 52, 57, 59, 74, . . . ) .

Note that p is strictly increasing and pi − pi−1 < n(xi + 1) � dn for all i. Moreover,
the number of multiples of n in the interval (pi−1, pi] is xi if wi−1 < wi, and xi + 1 if
wi−1 > wi. Since the permutation w ∈ Sn−1 has exactly k − 1 descents (so as a circular
permutation it has k descents), we have that pn = (k +

∑
xi)n = cn, so pi+n = pi + cn

for all i.
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Then consider the sequence p̄ obtained by reducing the terms in the sequence p

modulo dn. Since c and d are relatively prime and p0, . . . , pn−1 are all different mod-
ulo n, it follows that p̄0, . . . , p̄dn−1 are all distinct (as residues modulo dn). Moreover,
since pdn = cdn and pi − pi−1 < dn, p̄ has exactly c circular descents (correspond-
ing to whenever there is a multiple of dn in the interval (pi−1, pi]). Finally, since
pi+n = pi + cn, adding n (modulo dn) to each p̄i performs a cyclic shift by c′n to p̄,
where c′ ≡ c−1 (mod d). It follows that p̄ is one of the circular permutations counted by〈 dn−1

c−1
〉
d
.

Conversely, starting with a circular permutation p̄ counted by
〈 dn−1

c−1
〉
d
, we can form

the sequence p by letting pi be the smallest integer larger than pi−1 congruent to p̄i
modulo dn. Then since p̄ has c circular descents, pdn = cdn. By the symmetry property
of p̄, we must have that pi+n − pi = cn. (Note that for p̄ to be a permutation, we must
have c relatively prime to d.) It is now easy to reverse the procedure above to recover
(w, x), completing the proof of the bijection. �

Note that it follows from this proof that
〈 n
k

〉
d

= 0 if d and k + 1 are not relatively
prime.

We can now mimic the proof of Theorem 1.1 to get a result about d-sparse Laurent
polynomials, as in [3].

Theorem 4.2. (See [3, Proposition 5].) The expected number of d-sparse Laurent polyno-
mials f(z) such that �f1� = �f2� = · · · = �fm+n−1� = 0 is

〈m+n−1
m−1

〉
d
.

Proof. Let N = m + n. If f(z) is d-sparse, then we can write

f(z) = z−m

N/d∏
i=1

(
1 + riz

d
)

for some nonzero r1, . . . , rN/d with product 1, and again, as in Theorem 1.1, it suffices
to show that the expected number of possible r is (Nd )! ·

〈N−1
m−1

〉
d
.

As in Theorem 1.1, we wish to find the coefficient of zmk in
∏N/d

i=1 (1 + riz
d)k for

k = 1, . . . , N − 1 as a polynomial in the ri. This polynomial will be nonzero when d

divides mk. Hence if d is not relatively prime to m, this will occur for more than N
d − 1

values of k, so we would not expect any such f to exist.
If d is relatively prime to m, then for k = dk′, let Pk′(r1, . . . , rN

d
) be the coefficient

of zmk in
∏N/d

i=1 (1 + riz
d)k, or equivalently the coefficient of zmk′ in

∏N/d
i=1 (1 + riz)dk

′ .
Then (a1, . . . , aN

d
) lies in the support of Pk′ when 0 � ai � dk′ and

∑N/d
i=1 ai = mk′. In

other words, the Newton polytope of Pk′ is k′ · dΔm
d ,Nd

. Thus the expected number of
such f is

MV
(
dΔm

d ,Nd
, 2 · dΔm

d ,Nd
, . . . ,

(
N − 1

)
· dΔm

d ,Nd
, I

)
,

d
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where I is the segment between (0, 0, . . . , 0) and (1, 1, . . . , 1). Then the same argument as
in the last paragraph of the proof of Theorem 1.1 shows that this mixed volume is (Nd )!
times the normalized volume of dΔm

d ,Nd
, so the result follows from Theorem 4.1. �

5. Concluding remarks

Given the apparent connection between Laurent polynomials f(z) that satisfy The-
orem 1.1 and Eulerian numbers, it is natural to ask whether there is any direct corre-
spondence. In other words, can one give a bijection between permutations in Sn−1 with
k − 1 descents and these Laurent polynomials?

It is perhaps worth noting that the proof of Theorem 2.2 given in [8] is bijective: it
is shown that a hypersimplex can be triangulated in such a way that there is a natu-
ral bijection between the simplices in the triangulation and permutations with a given
number of descents. (For more information about this triangulation, see [6].) Moreover,
one can prove Theorem 2.1 using homotopy continuation methods, from which one may
similarly be able to derive a bijection between the Laurent polynomials f(z) and certain
simplices. However, the details behind this line of reasoning have yet to be explored.
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