期刊论文详细信息
JOURNAL OF COMBINATORIAL THEORY SERIES A 卷:155
A graphical calculus for the Jack inner product on symmetric functions
Article
Licata, Anthony1  Rosso, Daniele2  Savage, Alistair3 
[1] Australian Natl Univ, Math Sci Inst, Canberra, ACT, Australia
[2] Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
[3] Univ Ottawa, Dept Math & Stat, Ottawa, ON, Canada
关键词: Symmetric functions;    Jack inner product;    Categorification;    Heisenberg algebra;    Graded Frobenius superalgebra;    Fock space;    Wreath product algebra;   
DOI  :  10.1016/j.jcta.2017.11.020
来源: Elsevier
PDF
【 摘 要 】

Starting from a graded Frobenius superalgebra B, we consider a graphical calculus of B-decorated string diagrams. From this calculus we produce algebras consisting of closed planar diagrams and of closed annular diagrams. The action of annular diagrams on planar diagrams can be used to make clockwise (or counterclockwise) annular diagrams into an inner product space. Our main theorem identifies this space with the space of symmetric functions equipped with the Jack inner product at Jack parameter dim B-even - dim B-odd. In this way, we obtain a graphical realization of that inner product space. (C) 2017 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcta_2017_11_020.pdf 641KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次