JOURNAL OF PURE AND APPLIED ALGEBRA | 卷:226 |
Quantum Frobenius Heisenberg categorification | |
Article | |
Brundan, Jonathan1  Savage, Alistair2  Webster, Ben3,4  | |
[1] Univ Oregon, Dept Math, Eugene, OR 97403 USA | |
[2] Univ Ottawa, Dept Math & Stat, Ottawa, ON, Canada | |
[3] Univ Waterloo, Dept Pure Math, Waterloo, ON, Canada | |
[4] Perimeter Inst Theoret Phys, Waterloo, ON, Canada | |
关键词: Categorification; Frobenius algebra; Heisenberg algebra; Monoidal category; Diagrammatic calculus; | |
DOI : 10.1016/j.jpaa.2021.106792 | |
来源: Elsevier | |
【 摘 要 】
We associate a diagrammatic monoidal category Heis(k) (A; z, t), which we call the quantum Frobenius Heisenberg category, to a symmetric Frobenius superalgebra A, a central charge k is an element of Z, and invertible parameters z, t in some ground ring. When A is trivial, i.e. it equals the ground ring, these categories recover the quantum Heisenberg categories introduced in our previous work, and when the central charge k is zero they yield generalizations of the affine HOMFLY-PT skein category. By exploiting some natural categorical actions of Heis(k) (A; z, t) on generalized cyclotomic quotients, we prove a basis theorem for morphism spaces. (C) 2021 Elsevier B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jpaa_2021_106792.pdf | 960KB | download |