期刊论文详细信息
JOURNAL OF PURE AND APPLIED ALGEBRA 卷:226
Quantum Frobenius Heisenberg categorification
Article
Brundan, Jonathan1  Savage, Alistair2  Webster, Ben3,4 
[1] Univ Oregon, Dept Math, Eugene, OR 97403 USA
[2] Univ Ottawa, Dept Math & Stat, Ottawa, ON, Canada
[3] Univ Waterloo, Dept Pure Math, Waterloo, ON, Canada
[4] Perimeter Inst Theoret Phys, Waterloo, ON, Canada
关键词: Categorification;    Frobenius algebra;    Heisenberg algebra;    Monoidal category;    Diagrammatic calculus;   
DOI  :  10.1016/j.jpaa.2021.106792
来源: Elsevier
PDF
【 摘 要 】

We associate a diagrammatic monoidal category Heis(k) (A; z, t), which we call the quantum Frobenius Heisenberg category, to a symmetric Frobenius superalgebra A, a central charge k is an element of Z, and invertible parameters z, t in some ground ring. When A is trivial, i.e. it equals the ground ring, these categories recover the quantum Heisenberg categories introduced in our previous work, and when the central charge k is zero they yield generalizations of the affine HOMFLY-PT skein category. By exploiting some natural categorical actions of Heis(k) (A; z, t) on generalized cyclotomic quotients, we prove a basis theorem for morphism spaces. (C) 2021 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jpaa_2021_106792.pdf 960KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次