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1. Introduction

Let B be a nonnegatively graded Frobenius superalgebra over an algebraically closed 
field F of characteristic 0 (for example, the cohomology over F of a compact connected 
manifold). Inspired by constructions of Khovanov in [10] and Cautis and the first author 
in [4], the second and third author, in [19], associated to B a graded pivotal monoidal 
category H∗

B . The objects of H∗
B are formal direct sums of compact oriented 0-manifolds, 

and the morphisms are linear combinations of immersed oriented planar 1-manifolds, 
decorated by elements of the Frobenius algebra B, and subject to certain local relations. 
Associated to H∗

B are at least two potentially interesting algebraic objects:

• the center Z(H∗
B), which is the endomorphism algebra of the monoidal unit of the 

category H∗
B , is a graded supercommutative infinite-dimensional algebra, whose 

elements are linear combinations of immersed oriented closed 1-manifolds, deco-
rated by elements of B, and subject to the local relations of the graphical calculus 
of H∗

B ;
• the trace, or zeroth Hochschild homology, Tr(H∗

B) of H∗
B is a graded noncommutative 

infinite-dimensional algebra, whose elements are linear combinations of immersed 
closed annular 1-manifolds, decorated by elements of B, and subject to the local 
relations of the graphical calculus.

(We refer to Sections 3 and 4 for the precise definitions of the monoidal category H∗
B

and the algebras Z(H∗
B) and Tr(H∗

B).) The algebra of annular diagrams Tr(H∗
B) acts 

linearly on the space of planar diagrams Z(H∗
B).

The importance of the trace in diagrammatic categorification is first emphasized in the 
work of Beliakova–Habiro–Lauda with both Webster [2] and with Guliyev [1]. In particu-
lar, the fact that the trace acts on the center of a pivotal monoidal category goes back at 
least to [1]. Nevertheless, at present not much is known about the algebra Tr(H∗

B), except 
in the case B = F, where it was computed in [6]. The authors there suggest that, in the 
general case, Tr(H∗

B) should be understood in relation to the vertex algebra associated 
to the lattice K0(B), equipped with its Euler form. We do not take up the computation 
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of Tr(H∗
B) here. However, there is a subcategory HB of the monoidal category H∗

B, de-
fined by considering only those morphisms of degree zero, and the Hochschild homology 
Tr(HB) is naturally a subalgebra of Tr(H∗

B) (see Proposition 4.2). It turns out that there 
is a close relationship between Tr(HB) and the ring of symmetric functions, and the goal 
of the present paper is to explain this relationship.

In order to explain the main result of the paper, we assume for simplicity here that 
the degree zero subalgebra of the graded Frobenius superalgebra B is one-dimensional, 
that B is not concentrated in degree zero, and that the Nakayama automorphism of B
is trivial. (The constructions in the body of the paper are written in greater generality 
than this.) Our first main result, Theorem 4.5, states that the algebra of annular dia-
grams Tr(HB) is isomorphic to a Heisenberg algebra hB. As a consequence, we obtain 
canonical isomorphisms between the subalgebras Tr(HB)+ and Tr(HB)− of clockwise 
and counterclockwise annular diagrams and the algebra Sym of symmetric functions:

Tr(HB)± ∼= Sym . (1.1)

We then use the action of Tr(HB) on Z(H∗
B) to define a pairing

〈−,−〉B : Tr(HB)+ × Tr(HB)− −→ F.

This pairing may be defined in two equivalent ways: graphically using the annular/planar 
diagrammatic realisations of Tr(HB) and Z(H∗

B), or categorically, using the identifica-
tions of Tr(H∗

B) and Z(H∗
B) as the Hochschild homology and center of the Heisenberg 

category H∗
B . Our second main result, Theorem 5.5, identifies the pairing 〈−, −〉B with a 

bilinear form on Sym under the isomorphisms (1.1). More precisely, we prove that, after 
identifying Tr(HB)+ and Tr(HB)− with Sym, the pairing 〈−, −〉B is identified with the 
Jack pairing on Sym. That is, we have a commutative diagram

Tr(HB)− × Tr(HB)+

∼=

〈−,−〉B
F

Sym× Sym
〈−,−〉k

where 〈−, −〉k : Sym× Sym → F is the Jack pairing at Jack parameter k = dimBeven −
dimBodd. (Here Beven and Bodd are the even and odd parts of B.) Thus, we obtain a 
purely graphical realization of the algebra of symmetric functions with its Jack inner 
product at parameter k = dimBeven − dimBodd. In this sense, the Jack parameter k is 
categorified by the graded Frobenius superalgebra B.

A special case, which is of some interest, is when the Frobenius algebra B ∼= F[x]/(xk)
for a positive integer k. The relationship between this Frobenius algebra and symmetric 
functions was investigated in [5], which used wreath products of F[x]/(xk) with symmet-
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ric groups to give a categorical construction of a specialization of the Macdonald inner 
product (see (2.7)). The constructions of the current paper, on the other hand, give a 
parallel categorical construction of the Jack inner product, which is a further specializa-
tion of the inner products studied in [5]. Moreover, except for the Frobenius algebra B
itself, the basic input for the current paper is entirely graphical, involving only algebras 
of diagrams in the plane and the annulus. So while the proof of Theorem 5.5 makes use 
of Heisenberg categories and their representation theory, the statement of Theorem 5.5
is purely a theorem in algebraic combinatorics.

This paper is organized as follows. In Section 2 we review the definition of lattice 
Heisenberg algebras and we recall the Heisenberg algebra hB associated to a graded 
Frobenius superalgebra B. In Section 3 we recall the categories HB of [19], under some 
simplifying assumptions on B. Then, in Section 4 we prove that Tr(HB) injects into 
Tr(H∗

B) (after collapsing the grading and parity shifts), compute Tr(HB), and identify 
the action of Tr(HB) on the center Z(H∗

B) with the Fock space representation of hB. 
In Section 5 we define our diagrammatic pairing and show that it categorifies the Jack 
bilinear form on symmetric functions. In Section 6 we define a filtration on Z(H∗

B) and 
prove some results about the associated graded algebra. In particular, we relate the 
action of Tr(H∗

B) on Z(H∗
B) to the multiplication in Z(H∗

B). In Section 7 we discuss 
some natural further directions of research suggested by the current work.

In Appendix A, we show, in a completely general setting, how one can obtain a number 
of different presentations of lattice Heisenberg algebras that appear naturally from cate-
gorification. We also include some material related to lattice Heisenberg algebras arising 
from the Macdonald inner product on symmetric functions. We deduce presentations of 
these algebras which may be of independent interest, and we explain how the limiting 
procedure that produces the Jack inner product from the Macdonald inner product can 
be interpreted in terms of incorporating a differential at the categorical level.

Note on the arXiv version

For the interested reader, the tex file of the arXiv version of this paper includes hidden 
details of some straightforward computations and arguments that are omitted in the pdf 
file. These details can be displayed by switching the details toggle to true in the tex 
file and recompiling.
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2. Lattice Heisenberg algebras

2.1. Definitions

Throughout this paper, F will denote an algebraically closed field of characteristic 
zero. Consider the rings

Zq,π = Z[q, q−1, π]/(π2 − 1) and Fq,π = F[q, q−1, π]/(π2 − 1). (2.1)

Let L be a free Zq,π-module on the set {vi}i∈I , equipped with a nondegenerate sym-
metric sesquilinear form

〈−,−〉L : L× L → Zq,π.

Here we say a form is sesquilinear if it is Z-bilinear, and

〈v, qsπεw〉L = qsπε〈v, w〉L = 〈q−sπεv, w〉L, for all v, w ∈ L, s ∈ Z, ε ∈ Z2.

For i, j ∈ I, we will write 〈i, j〉 for 〈vi, vj〉.
We let Sym denote the Hopf algebra of symmetric functions with coefficients in Fq,π. 

If pn denotes the n-th power sum, then Sym has a basis given by

pλ = pλ1pλ2 , . . . , pλ�
, λ = (λ1, . . . , λ�) ∈ P,

where P denotes the set of partitions. We let |λ| =
∑�

1=1 λ� denote the size of a partition 
λ = (λ1, . . . , λ�) ∈ P. We will assume some familiarity with basic properties of symmetric 
functions. We refer the reader to [14] for an exposition of this topic.

Let

h
+
L = h

−
L = Sym⊗Zq,π

L ∼=
⊕

i∈I Sym .

We will add a superscript + or − to various symmetric functions (or elements of 
Sym⊗Zq,π

L) and generating functions to indicate that they are to be considered as 
elements of h+

L or h−L , respectively. In addition, for f ∈ Sym, we write fi, i ∈ I, for 
f ⊗ vi ∈ Sym⊗Zq,π

L. For example p+
n,i, n ∈ N, i ∈ I, is pn ⊗ vi ∈ h

+
L .

For n ∈ Z, consider the F-algebra homomorphism

θn : Fq,π → Fq,π, θn(q) = qn, θn(π) = −(−π)n.

There is a unique sesquilinear Hopf pairing determined by

〈−,−〉 : h−L × h
+
L → Fq,π, 〈p−n,i, p+

m,j〉 = δn,mnθn
(
〈i, j〉

)
, n,m ∈ N+, i, j ∈ I. (2.2)
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Remark 2.1. When I = {i}, with 〈i, i〉 = d ∈ Fq,π, the pairing (2.2) is given on the basis 
pλ, λ ∈ P, (here we drop the index i) by

〈p−λ , p+
μ 〉 = δλ,μzλ

�(λ)∏
k=1

θλk
(d), zλ =

∏
k≥1

kmk(λ)mk(λ)!, (2.3)

where mk(λ) is the number of parts of λ equal to k and �(λ) is the number of nonzero 
parts. (The general formula follows from the values of the pairing on the power sums 
as in [14, Example (b), p. 306].) One can write such an explicit formula in the more 
general setting of arbitrary I, but the expression is more complicated (see, for example, 
[3, Prop. 3.1] and [18, (8.1)]).

Let hL = h
+
L#h

−
L be the Heisenberg double associated to the Hopf pairing (2.2). Note 

that, since the pairing is sesquilinear (as opposed to Fq,π-bilinear, as in [17–20]), we have 
Fq,π-vector space isomorphisms

hL
∼= h

+
L ⊗Fq,π

h
−
L
∼= h

−
L ⊗Fq,π

h
+
L ,

where the action of Fq,π on h−L is twisted via the F-linear involution of Fq,π determined 
by q �→ q−1, π �→ π.

The Heisenberg double hL is generated as an Fq,π-algebra by p±n,i, n ∈ N+, i ∈ I, with 
relations

[p+
n,i, p

+
m,j ] = 0, [p−n,i, p

−
m,j ] = 0, [p+

n,i, p
−
m,j ] = δn,mnθn(〈i, j〉), n,m ∈ N+. (2.4)

Note that hL is naturally a graded algebra, where for a degree n element f ∈ Sym and 
i ∈ I, we declare f±

i to be of degree ±n. In particular, p±n,i is of degree ±n.

2.2. Heisenberg algebras associated to a Frobenius algebra

We now relate the lattice Heisenberg algebras described above to the Heisenberg 
algebras associated to a graded Frobenius superalgebra in [19, §5].

Let B =
⊕

n∈N
Bn be an N-graded Frobenius superalgebra over F with trace map 

trB : B → F of Z-degree −δ, δ ∈ N. (In other words, δ is the top degree of B.) For 
simplicity, we assume that the trace map of B is supersymmetric and even. In partic-
ular, trB(b1b2) = (−1)b̄1b̄2trB(b2b1) for all homogeneous b1, b2 ∈ B. Here b̄ denotes the 
parity of a homogeneous element b ∈ B. In addition, we let |b| denote the Z-degree of 
a homogeneous element b. Whenever we write an expression involving parities and/or 
degree, we shall implicitly assume that the corresponding element is homogeneous. In 
the language of [19], our assumptions mean that ψ = idB and δ = 0. (The δ of [19] is 
not the same as the δ of the current paper.) We shall also assume that

all simple B-modules are of type M (i.e. not isomorphic to their parity shifts).

Therefore, in the language of [19], we have k = Zq,π.
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We can naturally associate a lattice to B as follows. We let L = LB = K0(B) be 
the split Grothendieck group of the category B-pmod of finitely-generated projective 
graded B-modules, with coefficients in F. More precisely, K0(B) is the quotient of the 
free F-module on isomorphism classes of finitely-generated projective graded B-modules, 
by the F-submodule generated by [M1]∼= − [M2]∼= + [M3]∼= for all M1, M2, M3 ∈ B-pmod
such that M2 ∼= M1 ⊕M3. Here [M ]∼= denotes the isomorphism class of M ∈ B-pmod.

We define the structure of an Fq,π-module on K0(B) in the usual way, defining

qsπε[M ]∼= = [{s, ε}M ],

where {s, ε}M denotes the shift of M determined by

({s, ε}M)s′,ε′ = Ms′−s,ε′+ε.

Then K0(B) has a basis over Fq,π given by the classes of the indecomposable projective 
modules Pi, i ∈ I, of B. We adopt the convention that the Pi are generated in degree 
(0, 0). We then define a sesquilinear pairing 〈−, −〉 : L × L → Fq,π determined by

〈[M ], [N ]〉 = grdim HOMB(M,N). (2.5)

Let hB be the Heisenberg algebra associated to B in [19, Def. 5.1], but where we 
extend scalars to Fq,π (i.e. hB ⊗Zq,π

Fq,π in the language of [19]).

Proposition 2.2. We have that hB is isomorphic, as a graded Fq,π-algebra, to the algebra 
hL defined in Section 2.1 with L = LB the lattice associated to B as above.

Proof. The proposition follows immediately from a comparison of the presentations of hB
given in [19, Prop. 5.5] to the presentations of hL given in Propositions A.1 and A.2. �

In the sequel, we will identify hB and hL via the isomorphism of Proposition 2.2.

2.3. Recovering the pairing

The algebra hL acts naturally on h+
L via the Fock space representation (see, for ex-

ample, [17, §2] or [20, Def. 2.10]). Define the Fq,π-linear map

κ0 = 〈1
h
−
L
,−〉 : h+

L → Fq,π. (2.6)

In other words, κ0 is projection onto the degree zero piece of h+
L , where the grading on 

h
+
L is induced by the natural grading on Sym (see Section 2.1). Equivalently, κ0 is the 

counit of the Hopf algebra h+
L . The following lemma illustrates how one can recover the 

pairing (2.2) from the algebra hL.
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Lemma 2.3. We have

κ0 ((fg) · 1H+) = 〈f, g〉, for all f ∈ h
−
L , g ∈ h

+
L .

Proof. We have

κ0 ((fg) · 1H+) = κ0(f · g) = 〈1
h
−
L
, f · g, 〉 = 〈f, g〉,

where, in the third equality, we have used the fact that the Fock space action of h−L on 
h
+
L is adjoint to multiplication in h−L . �

2.4. The Jack pairing

Fix a Z-graded super vector space V . Then we can consider the setup of Section 2.1
in the special case that L is a lattice of rank one, generated by an element v satisfying 
〈v, v〉 = grdimV .

Specializing even further, fix k ∈ N and define V = C[x]/(xk). If we declare deg x =
(1, 0) ∈ Z × Z2, then

grdimV = 1 + q + q2 + · · · + qk−1 = 1 − qk

1 − q
,

and the pairing (2.3) becomes

〈p−λ , p+
μ 〉 = δλ,μzλ

�(λ)∏
i=1

1 − qkλi

1 − qλi
, λ, μ ∈ P. (2.7)

This is a specialization of the pairing defining the Macdonald symmetric functions (see 
(A.4)). Note that the quotients appearing in (2.7) are, in fact, polynomials in q. Therefore, 
we can specialize further to q = 1. This yields the Jack pairing at parameter k, given by

〈p−λ , p+
μ 〉k = δλ,μkzλ, λ, μ ∈ P, (2.8)

and used to define the Jack symmetric functions (see [14, §VI.10]).

Remark 2.4. The choice of V = F[x]/(xk), and its relevance for the categorification of 
the ring of symmetric functions with a specialization of the Macdonald bilinear form, is 
discussed in [5]. See also Section A.4 for an explanation of how we can view the above 
construction as arising from one related to the Macdonald inner product.



A. Licata et al. / Journal of Combinatorial Theory, Series A 155 (2018) 503–543 511
3. The graphical calculus of the Heisenberg category

3.1. The Heisenberg category

As in Section 2.2, we let B =
⊕

n∈N
Bn be an N-graded Frobenius superalgebra over 

F with even, supersymmetric trace map trB : B → F of Z-degree −δ, δ ∈ N. In this 
section we recall the definition, given in [19], of the Heisenberg category HB associated 
to B. (In fact, the construction in [19] is more general, working for an arbitrary N-graded 
Frobenius superalgebra, without the simplifying assumptions on B we have made here.)

Given a basis B of B, we let B∨ = {b∨ | b ∈ B} denote the right dual basis defined by 
the property that

trB(b1b∨2 ) = δb1,b2 for all b1, b2 ∈ B.

We define H′
B to be an F-linear strict monoidal category whose objects are generated 

by symbols {n, ε}Q+ and {n, ε}Q−, for n ∈ Z, ε ∈ Z2. We think of {n, ε}Q+ as being a 
shifted version of Q+ and we declare the monoidal structure to be compatible with shifts 
{·, ·}, so that, for example, {s, ε}Q− ⊗ {s′, ε′}Q− = {s + s′, ε + ε′}(Q− ⊗ Q−). We will 
usually omit the ⊗ symbol, and write tensor products as words in Q+ and Q−. Thus an 
arbitrary object of H′

B is a finite direct sum of words in the letters Q+ and Q− where 
each word has a shift.

The space of morphisms between two objects is the F-algebra generated by suitable 
planar diagrams. The diagrams consist of oriented compact one-manifolds immersed 
into the plane strip R × [0, 1] modulo certain local relations. The grading on morphisms, 
which will be specified later in this section, determines the difference in shifts between 
the domain and codomain.

A single upward oriented strand denotes the identity morphism from Q+ to Q+ while 
a downward oriented strand denotes the identity morphism from Q− to Q−.

Strands are allowed to carry dots labeled by elements of B. For example, if b, b′, b′′ ∈ B, 
then the diagram

b′′
b′
b

is an element of HomH′
B
(Q+, {−|b| − |b′| − |b′′|, ̄b+ b̄′ + b̄′′}Q+). (See below for an expla-

nation of the degree shift.) Diagrams are linear in the dots in the sense that
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(z1b1 + z2b2) = z1

(
b1

)
+ z2

(
b2

)
for z1, z2 ∈ F, b1, b2 ∈ B.

Collision of dots is controlled by multiplication in the algebra B:

b′
b = (−1)b̄b̄

′
b′b (3.1)

b′
b = bb′ (3.2)

The sign in the first relation comes from the fact that composition of dots on upward 
strands actually corresponds to multiplication in the opposite algebra Bop. We allow 
dots to slide freely along strands.

We also allow strands to cross. For example

b

is an element of HomH′
B
(Q+Q−, {−|b|, ̄b}Q−Q+). (See below for an explanation of the 

degree shift.) Notice that the domain of a morphism is specified at the bottom of the 
diagram and the codomain is specified at the top, so we compose diagrams by stacking 
them and reading upwards.

We assign a Z × Z2-grading to the space of planar diagrams by defining

deg = (0, 0), (3.3)

deg b = deg b, (3.4)

deg = (0, 0), (3.5)

deg = (0, 0), (3.6)

deg = (δ, 0), (3.7)

deg = (−δ, 0). (3.8)

We consider diagrams up to super isotopy fixing the vertical coordinates of the end-
points of strands. By super isotopy, we mean that dots on distinct strands supercommute 
when they move past each other vertically:
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b
. . . b′ = (−1)b̄b̄′ b . . .

b′
. (3.9)

Because of the sign changes involved in super isotopy invariance, we do not allow 
diagrams in which odd dots appear at the same height (i.e. have the same vertical 
coordinate).

The local relations we impose are the following:

b = b (3.10)

b = b (3.11)

= (3.12)

= (3.13)

= −
∑
b∈B

b∨

b

(3.14)

= (3.15)

b = trB(b) (3.16)

= 0 (3.17)

Relation (3.14) is independent of the choice of basis B by [19, Lem. 3.1]. By local relation, 
we mean that relations (3.10)–(3.17) can be applied to any subdiagram contained in a 
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horizontal strip of the form R × [a, b], with 0 < a < b < 1, where the remainder of the 
strip (to the right and left of the subdiagram) consists only of strands without dots. 
If we wish to perform a local relation on a subdiagram in a vertical strip containing 
dots, we should first super isotope the diagram so that the vertical strip containing the 
subdiagram no longer contains dots.

The monoidal structure on morphisms is given by horizontal juxtaposition of dia-
grams. However, because of (3.9), it is important that we specify that, when juxtaposing 
diagrams, dots in the left-hand diagram should be placed higher (vertically) than dots in 
the right-hand diagram. We always super isotope the diagrams before juxtaposing them 
to ensure that this is the case.

Note that all of the graphical relations are homogeneous. Thus, the morphism spaces 
of H′

B are Z × Z2-graded vector spaces and composition of morphisms is compatible 
with the grading. We denote by {·, ·} the grading shift in H′

B. It will be important in 
the sequel to emphasize that, in the category H′

B, we only allow morphisms of degree 
zero. In particular, a linear combination of diagrams of degree (−s, ε) whose tops and 
bottoms correspond to the sequences x and y, respectively, of the generating objects Q+
and Q− is to be viewed as a degree zero morphism from x to {s, ε}y.

We define the category HB to be the idempotent completion (also known as the 
Karoubi envelope) of H′

B. By definition, the objects of HB consist of pairs (x, e), where 
x is an object of H′

B and e : x → x is an idempotent morphism. The space of morphisms 
in HB from (x, e) to (x′, e′) is the subspace of morphisms in H′

B consisting of g : x → x′

such that ge = g = e′g. The idempotent e defines the identity morphism of (x, e) in HB .
Note that HB inherits the Z × Z2-grading from H′

B . This means that the split 
Grothendieck group K0(HB) of HB (with coefficients in F) is an Fq,π-algebra. Precisely, 
we define

qsπε[x]∼= := [{s, ε}x]∼=, x ∈ ObHB , s ∈ Z, ε ∈ Z2,

where [x]∼= denotes the isomorphism class of x (and its image in the Grothendieck group). 
The monoidal structure in HB descends to a multiplication in K0(HB).

By relaxing the condition that morphisms must be of degree zero, we obtain the 
graded category H∗

B with the same objects as HB, but with morphism spaces between 
objects x and y given by

HomH∗
B
(x, y) = HOMHB

(x, y) :=
⊕

(s,ε)∈Z×Z2

HomHB
(x, {s, ε}y). (3.18)

3.2. The algebras of annular and closed diagrams

Associated to the graded category H∗
B are two natural algebras. The first is the space of 

annular diagrams, with multiplication given by nesting diagrams; so for annular diagrams 
A1 and A2, we define A1A2 to be the annular diagram obtained by placing A2 in the 
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Fig. 1. An annular diagram A and a closed diagram D. The closed dots are labeled by elements of B, and 
the open dots represent right curls (see (4.1)).

Fig. 2. The action of the annular diagram A on the closed diagram D.

center region of A1. As for the monoidal structure in H∗
B, we always first super isotope 

the diagrams so that all the dots in A1 are higher (vertically) than those in A2.
The second algebra associated to H∗

B is the space of closed diagrams, with multipli-
cation given by vertical stacking; so for closed diagrams D1 and D2, we define D1D2 to 
be the closed diagram obtained by placing D1 above D2.

The algebra of annular diagrams acts naturally on the space of closed diagrams by 
placing the closed diagram in the center of the annulus and viewing the result as a closed 
diagram. See Figs. 1 and 2. Again, we always first super isotope so that the dots in the 
annular diagram are higher than those in the closed diagram.

The goal of the current paper is to relate the two algebras mentioned above to the 
ring of symmetric functions. In particular, we will identify certain annular diagrams with 
specific symmetric functions and use the action of annular diagrams on closed diagrams 
to obtain a diagrammatic realization of the Jack inner product. Our computations will 
use the fact that the algebras of annular diagrams and closed diagrams correspond, 
respectively, to the trace and center of the category H∗

B.

4. Trace decategorification

In this section we study the trace decategorification of the category HB. For a survey 
of trace decategorification that is well suited to the setup of the current paper, we refer 
the reader to [1, §3].
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4.1. Trace of the Heisenberg category

By definition, the trace, or zeroth Hochschild homology, of H′
B is given by

Tr(H′
B) = (EndH′

B) / SpanF{fg − gf | f ∈ HomH′
B
(x, y), g ∈ HomH′

B
(y, x),

x, y ∈ ObH′
B},

where EndH′
B =

⊕
x∈Ob H′

B

HomH′
B
(x, x).

We denote the image of a morphism f ∈ HomH′
B
(x, x) in Tr(H′

B) by [f ]. The trace 
Tr(H′

B) is naturally a module over Fq,π, where

qsπε[f ] = [{s, ε}f ], f ∈ HomH′
B
(x, x), s ∈ Z, ε ∈ Z2.

(Note that {s, ε}f ∈ HomH′
B
({s, ε}x, {s, ε}x).) Since the trace remains unchanged under 

passage to the idempotent completion (see [1, Prop. 3.2]), we have Tr(H′
B) = Tr(HB).

The monoidal structure on the category H′
B induces a multiplication on the trace 

Tr(H′
B). Namely, given morphisms f : x → x′ and g : y → y′ in H′

B , then fg : xy → x′y′, 
and we define [f ][g] = [fg]. With this multiplication, Tr(H′

B) is an Fq,π-algebra.
Recall that the objects of H′

B are sums of (possibly empty) sequences x of the gener-
ating objects Q+ and Q−. We define the ascension of such a sequence x, denoted ascx, to 
be the total number of occurrences of Q+ minus the total number of occurrences of Q−. 
Ascension then defines a natural Z-grading on Tr(H′

B) by declaring asc[f ] = ascx for 
f ∈ HomH′

B
(x, x).

Remark 4.1. In the case that B = F, the trace of H′
F

was considered in [6]. However, in 
the case that the grading on B is nontrivial, the trace of H′

B behaves very differently. 
This arises from the fact that the grading on B induces a grading on the morphism spaces 
of H′

B (see Section 3.1). By definition, we require morphisms in H′
B to have degree zero. 

For example, the diagram

:= (4.1)

has Z-degree equal to the top degree δ of B. In the category H′
B, we thus view this 

diagram as a degree zero morphism from Q+ to {δ, 0}Q+. So, if δ 
= 0, this is not an 
endomorphism of any object in H′

B. Therefore, we do not consider its class in the trace. 
As we will see, this drastically simplifies the trace. One should compare this to the fact 
that, for δ 
= 0, one can show that the split Grothendieck group of H′

B is isomorphic 
to the Heisenberg algebra hB (see [19, Th. 10.5] and [4, Th. 1]), whereas the analogous 
statement for B = F seems to be much harder to prove and is, in fact, still a conjecture 
(see [10, Conj. 1]).
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The trace of the graded category H∗
B is defined to be

Tr(H∗
B) = (ENDHB) / SpanF{fg − (−1)f̄ ḡgf | f ∈ HOMHB

(x, y), g ∈ HOMHB
(y, x),

x, y ∈ ObHB},

where ENDHB =
⊕

x∈Ob HB

HOMHB
(x, x).

We again denote the image of a morphism f ∈ ENDHB in Tr(H∗
B) by [f ], and we have 

Tr(H∗
B) = Tr(H′

B
∗). In Tr(H∗

B), we have

q[f ] = [f ], π[f ] = −(−1)f̄ [f ], f ∈ ENDHB . (4.2)

Therefore, Tr(H∗
B) is naturally an F-algebra. Note that, in general, Tr(H∗

B) contains 
classes of many more endomorphisms compared to Tr(HB). For instance Tr(H∗

B) contains 
the class of the right curl (4.1), since we now allow endomorphisms of nonzero degree. 
See Remark 4.7.

By [19, Lem. 10.1], every object of H′
B is isomorphic to a direct sum of shifts of objects 

of the form Qn
+Qm

− , n, m ∈ N. Thus, by [2, Lem. 2.1], we have

Tr(HB) = Tr(H′
B) = Tr(H′′

B),

where H′′
B is the full subcategory of H′

B whose objects are shifts of Qn
+Qm

− , n, m ∈ N. 
Similarly,

Tr(H∗
B) = Tr(H′

B
∗) = Tr(H′′

B
∗),

where H′′
B
∗ is the full subcategory of H′

B
∗ whose objects are shifts of Qn

+Qm
− , n, m ∈ N.

4.2. An injection of traces

Define

ENDH′
B := EndH′

B
∗ =

⊕
x∈Ob H′

B

HomH′
B

∗(x, x) =
⊕

x∈Ob H′
B

HOMH′
B
(x, x),

and define ENDH′′
B similarly. Then we have a natural inclusion map

EndH′
B ↪→ ENDH′

B . (4.3)

In the remainder of this paper, we will view F as an Fq,π-module via q �→ 1, π �→ −1.
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Proposition 4.2. Assume B 
= B0 (i.e. δ > 0). The natural inclusion (4.3) induces an 
injective F-algebra homomorphism

Tr(HB) ⊗Fq,π
F ↪→ Tr(H∗

B). (4.4)

Proof. Let

K = SpanF{fg − gf | f ∈ HomH′
B
(x, y), g ∈ HomH′

B
(y, x), x, y ∈ ObH′′

B} ⊆ EndH′′
B ,

K∗ = SpanF{fg − (−1)f̄ ḡgf | f ∈ HOMH′
B
(x, y), g ∈ HOMH′

B
(y, x), x, y ∈ ObH′′

B}
⊆ EndH′′

B
∗
.

Thus,

Tr(HB) = (EndH′′
B)/K and Tr(H∗

B) = (ENDH′′
B)/K∗.

We clearly have

K ⊆ K∗ ∩ EndH′′
B ,

and, by (4.2), we have an induced map Tr(HB) ⊗Fq,π
F → Tr(H∗

B).
It remains to prove that

K∗ ∩ EndH′′
B ⊆ K.

Suppose f ∈ HOMH′
B
(x, y), g ∈ HOMH′

B
(y, x) for some x, y ∈ ObH′′

B . By the definition 
of H′′

B , we have x = Qnx
+ Qmx

− and y = Qny

+ Qmy

− for some nx, mx, ny, my ∈ N. Thus, 
the argument used in the proof of [19, Lem. 10.2] shows that f and g have no nonzero 
negative degree components. Thus, if fg−gf lies in degree zero, we must have fg−gf =
f0g0 − g0f0, where f0 and g0 are the degree zero pieces of f0 and g0, respectively. The 
result follows. �
4.3. Diagrammatic realization of the trace

In the case that B = F, it was explained in [6, §4] that the trace of HF can be viewed 
as diagrams on the annulus. We can do the same for the categories HB and H∗

B . However, 
as noted in Remark 4.1, we must be careful to only consider morphisms of degree zero. 
For example, consider the relation (3.14). All diagrams in this equation are of degree 
zero, and thus correspond to elements of EndH′

B
(Q−Q+). However, in the trace, we will 

want to slide the cup or cap around the annulus. In this case, we are considering the 
rightmost term of (3.14) as a composition of morphisms

Q−Q+ → {δ + |b|}∅ → Q−Q+,

and we must keep track of the grading shift on the object ∅.
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Given f ∈ EndH′
B , we depict the element [f ] ∈ Tr(HB) by drawing f on the left side 

of an annulus and then closing up the diagram to the right:

f � f (4.5)

Elements of Tr(H∗
B) can be viewed similarly.

Remark 4.3. Above, we have taken the right trace, which corresponds diagrammatically 
to closing off morphisms of H′

B or H′
B
∗ to the right. One can also take the left trace 

by closing off to the left. The relation between the two constructions is as follows. The 
adjunctions (i.e. the cups and caps) give involutions of the categories HB and H∗

B that 
interchange Q+ and Q− and reverse the order of tensor products. Diagrammatically, 
this automorphism f �→ f∨ comes from rotating diagrams through an angle of π. Then, 
closing off f to the right yields the same annular diagram as closing off f∨ to the 
left. The resulting anti-automorphism from the left trace to the right trace interchanges 
Tr(HB)± (see (4.9)) and corresponds to the anti-automorphism from the Heisenberg 
double h+

B#h
−
B to the opposite Heisenberg double h−B#h

+
B . Whereas the action of the left 

trace on the center, to be described in Section 4.5, corresponds to the lowest weight Fock 
space representation (generated by a vector killed by Tr(HB)−), the natural action of the 
right trace on the center corresponds to the highest weight Fock space representation.

4.4. Identification of the trace

For n ∈ N+, let

B�n := B⊗n
� Sn

be the wreath product algebra associated to B, with grading inherited from B (i.e. we 
take Sn to lie in degree zero). By convention, we set B�0 = F. The degree zero piece of 
B�n is B�n

0 = B0 � Sn.
Let e1, . . . , e�, be idempotents in B such that Be1, . . . , Be�, is a complete list of 

(pairwise non-isomorphic) representatives of the isomorphism classes of indecomposable 
projective B-modules, up to grading and parity shift. Note that ei ∈ B0 for all i ∈
{1, . . . , �}. Similarly, for λ 
 n, we let eλ be an idempotent of FSn such that (FSn)eλ is 
the simple module corresponding to the partition λ.
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For n ∈ N, define

P�(n) =
{
λ = (λ1, . . . , λ�) ∈ P� | |λ| :=

∑�
i=1 |λi| = n

}
.

For λ = (λ1, . . . , λ�) ∈ P�(n), let

eλ :=
(
e
⊗|λ1|
1 ⊗ · · · ⊗ e

⊗|λ�|
�

)
(eλ1 ⊗ · · · ⊗ eλ�)

be the corresponding idempotent of B�n, where

eλ1 ⊗ · · · ⊗ eλ� ∈ FS|λ1| ⊗ · · · ⊗ FS|λ�| ⊆ FSn.

Then B�neλ, λ ∈ P�(n), is a complete set of indecomposable projective B�n-modules, 
up to isomorphism and shift. (See, for example, [19, Prop. 4.4].)

For λ 
 n and i ∈ I, we set

eλ,i = e⊗n
i eλ, i ∈ {1, . . . , �}, λ 
 n.

We have natural algebra homomorphisms

(B�n)op → ENDH′
B
(Qn

+), B�n → ENDH′
B
(Qn

−) (4.6)

(see [19, (9.1), (9.2)]). For an element of B�n, we will use superscripts + and − to 
denote the image of this element in ENDH′

B
(Qn

+) and ENDH′
B
(Qn

−), respectively, under 
the above maps. For instance, for i ∈ I and λ 
 n, e+

λ,i is the idempotent eλ,i ∈ B�n, 
viewed as an endomorphism of Qn

+.
Recall that the trace, or cocenter, of a superalgebra A is the vector space

Tr(A) := A/ SpanF{ab− (−1)āb̄ba | a, b ∈ A}.

Lemma 4.4. Suppose A is a finite-dimensional semisimple superalgebra whose simple 
modules are all of type M . Let b1, . . . , bs be a set of idempotents such that Ab1, . . . , Abs
is a complete set of (pairwise non-isomorphic) representatives of simple A-modules. Then 
the images of b1, . . . , bs form a basis of Tr(A).

Proof. The assumptions on A imply that it is isomorphic to a product of superalgebras 
of the form Mm|n for m, n ∈ N, not both zero. Thus, it suffices to consider the case 
A = Mm|n. Then we have

Tr(A) = A/ SpanF{XY − (−1)X̄Ȳ Y X} = Mm|n/{X | strX = 0},

where strX denotes the supertrace of X ∈ Mm|n. Now, up to conjugation by a degree 
zero element, we can take the minimal idempotent b of A to be the matrix with a 1 in 
the (1, 1)-entry and zeros elsewhere. Then str b = 1 and the result follows. �
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The Chern character for HB is the homomorphism of Fq,π-algebras

ξB : K0(HB) → Tr(HB) = Tr(H′
B), [x]∼= �→ [1x], x ∈ ObHB .

Theorem 4.5. Assume B 
= B0 (i.e. δ > 0). If B0 is semisimple, then the map

ξB : K0(HB) ⊗Z F → Tr(HB)

is an isomorphism of Fq,π-algebras. Furthermore, we have an isomorphism of Fq,π-alge-
bras uniquely determined by

ϕB : Tr(HB) ∼= hB ,
[
e±λ,i

]
�→ s±λ,i, (4.7)

where sλ denotes the Schur function associated to λ ∈ P.

Proof. Recall from Section 4.1 that we have Tr(H′
B) = Tr(H′′

B), where H′′
B is the full 

subcategory of H′
B whose objects are shifts of Qn

+Qm
− , n, m ∈ N. By [19, Lem. 10.2], we 

have

EndH′
B
(Qn

+Qm
− ) = ENDH′

B
(Qn

+Qm
− )0,0 ∼= (B�n

0 )op ⊗F B
�m
0 , n,m ∈ N,

where the isomorphism (which we will view as identification) comes from (4.6). It follows 
that

Tr(HB) =
⊕

n,m∈N

Cop
n ⊗ Cm,

where, for n ∈ N,

Cn = B�n
0 / SpanF{fg − gf | f, g ∈ B�n

0 }

is the cocenter of the ring B�n
0 .

By [19, Th. 10.5], K0(HB) has an Fq,π-basis given by

[(
Q|λ|

+ Q|μ|
− , e+

λe
−
μ

)]
∼=
, λ,μ ∈ P�.

Since

ξB

([(
Q|λ|

+ Q|μ|
− , e+

λe
−
μ

)]
∼=

)
= [e+

λe
−
μ ],

it follows from Lemma 4.4 that ξB is an isomorphism. (Note that injectivity also follows 
from [2, Prop. 2.4].)
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The isomorphism ϕB in the last statement of the theorem is given by the composition

ϕB = α ◦ ξ−1
B ,

where α : K0(HB) → hB is the isomorphism of F-algebras from [19, Thm. 10.5] (after 
tensoring over Z with F). To see that

ϕB

([
e±λ,i

])
= s±λ,i,

it suffices to show that

α
([(

Qn
±, eλ,i

)]
∼=

)
= s±λ,i (4.8)

for all partitions λ 
 n. By [19, Prop. 5.5], [19, Th. 9.2], and Proposition A.1, the equa-
tion (4.8) holds for a one-part partition λ = (n) (and also for the transpose λ = (1n)). 
Now, straightforward generalizations of the proof of [4, Lem. 5] and [4, Rem. 6] show that 
the expression for 

[(
Qn

±, eλ,i
)]

∼= as a linear combination of products of the generators [(
Qm

± , e(m),i
)]

∼=, m ∈ N, is given by the Giambelli rules in the ring of symmetric func-
tions for expressing the Schur functions in terms of complete homogeneous symmetric 
functions. On the other hand, in hB, the expressions for s±λ,i in terms of the generators 
s±(m),i are also given by the Giambelli rules. Thus, since (4.8) holds when λ = (n), and 
α is an algebra isomorphism, it follows that (4.8) holds for all λ. �
Remark 4.6. Recall that the algebra hB has a natural Z-grading, where we view a degree n
symmetric function in H± as living in degree ±n (see Section 2.1). Then the isomorphism 
ϕB sends elements in Tr(HB) of ascension n to degree n elements of hB, for n ∈ Z. Thus 
ϕB is also an isomorphism of graded algebras.

Remark 4.7. One should compare Theorem 4.5 to [6, Th. 1], which considered the case 
B = F. In that case, the trace Tr(HF) is a quotient of a W-algebra, and is much larger 
than the corresponding Heisenberg algebra hF. This is because of the difference pointed 
out in Remark 4.1. Of course, instead of HB one could consider the corresponding graded 
category H∗

B. As noted in the introduction, the trace of H∗
B should be related to W-

algebras.

Let

Tr(HB)± =
⊕
n∈N

[
EndH′

B
(Qn

±)
]
. (4.9)

By Theorem 4.5, we have an isomorphism of Fq,π-modules

Tr(HB) ∼= Tr(HB)+ ⊗Fq,π
Tr(HB)−, (4.10)



A. Licata et al. / Journal of Combinatorial Theory, Series A 155 (2018) 503–543 523
and

ϕB

(
Tr(HB)±

)
= h

±
B.

For n ∈ N and i ∈ {1, . . . , �}, let P±
n,i be the class in Tr(HB) of the element of 

EndH′
B
(Qn

±) corresponding, under the homomorphism (4.6), to e⊗n
i wn, where wn is a 

cycle in Sn of length n. Then

P±
λ,i := P±

λ1,i
P±
λ2,i

· · ·P±
λ�,i

, λ = (λ1, . . . , λ�) ∈ P, (4.11)

is the class of the element of EndH′
B
(Qn

±) corresponding, under the homomorphism (4.6), 
to e⊗n

i wλ, where wλ is a permutation in Sn of cycle type λ 
 n. For example, diagram-
matically,

P+
(3,2),i = ,

where the dots are labeled by the idempotent ei ∈ B.

Proposition 4.8. Recalling the isomorphism ϕB of (4.7), we have

ϕB

(
P±
λ,i

)
= p±λ,i, λ ∈ P, i ∈ {1, . . . , �}.

Proof. We fix i ∈ {1, . . . , �} and drop the subscript i from the notation. Let Lλ denote 
the irreducible representation of the symmetric group Sn indexed by the partition λ 
 n, 
with character χλ. For μ 
 n, let

Cμ =

⎛
⎝ ∑

g of cycle type μ

g

⎞
⎠ ∈ Z(C[Sn])

denote the sum over permutations of cycle type μ. The set {Cμ}μ�n is a basis of the 
center Z(C[Sn]). Another basis of Z(C[Sn]) is given by the primitive central idempotents 
{ẽλ}. We have

χλ(ẽμ) = δμ,λ dimLλ and χλ(Cμ) = zμχλ(gμ),
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where gμ is any permutation of cycle type μ and zμ is the size of the conjugacy class of 
type μ (see (2.3)). Thus, in Z(C[Sn]), we may express the basis {Cμ} in terms of the 
basis {ẽλ} by

Cμ =
∑
λ

zμ
dimLλ

χλ(gμ)ẽλ.

Now, under the map ι : Z(C[Sn]) → Tr(C[Sn]), we have

ι(Cμ) = zμι(gμ), and ι(ẽλ) = (dimLλ)ι(eλ),

where we recall that eλ ∈ C[Sn] is a Young idempotent such that C[Sn]eλ ∼= Lλ. It 
follows that for any permutation gμ ∈ Sn of cycle type μ, we have

ι(gμ) =
∑
λ

χλ(gμ)ι(eλ).

In other words, in Tr(C[Sn]), the transition matrix between the basis given by the classes 
of permutations and the basis given by Young idempotents is given by the character table 
of Sn. On the other hand, by [14, (I.7.8)], the transition matrix between the power sum 
basis and the Schur function basis is also given by the character table of Sn:

pμ =
∑
λ

χλ(gμ)sλ.

Thus, in any linear map (such as ϕB) from Tr(C[Sn]) to symmetric functions, if the class 
of the Young idempotent eλ is sent to the Schur function sλ for all λ, then the class of 
a permutation gμ of cycle type μ will be sent to the power sum symmetric function pμ. 
This completes the proof. �
Remark 4.9. Proposition 4.8 illustrates an important feature of the trace categorification 
of hB given by Theorem 4.5. Namely, the power sum symmetric functions have a natural 
interpretation as classes of certain permutations. In the Grothendieck group categorifi-
cation of hB given in [19, Th. 10.5], the power sum symmetric functions do not seem to 
have such a natural interpretation.

4.5. Action of the trace on the center

All objects of HB have biadjoints up to grading and parity shifts, and all adjunctions 
in HB are cyclic. Thus, the trace Tr(H∗

B) acts on the graded center

Z(H∗
B) := HOMH∗

B
(∅,∅),

as we now explain. Note that Z(H∗
B) is naturally an F-algebra, but does not have the 

natural structure of an Fq,π-module arising from shifts, since the nontrivial shift of an 
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endomorphism of ∅ is no longer an endomorphism of ∅. (Rather, it is an endomorphism 
of a shift of ∅.)

Essentially, the action of Tr(H∗
B) on Z(H∗

B) is the usual one for a pivotal monoidal 
category (or, more generally, a pivotal 2-category). See, for example, [2, §9.1]. However, 
since in the category HB the objects Q+ and Q− are only biadjoint up to a grading shift, 
we are forced to work in the graded category H∗

B instead of HB itself. In addition, we 
need to carefully define the grading conventions in our action.

The action is defined as follows. The graded center Z(H∗
B) consists of linear combina-

tions of closed diagrams D, which are morphisms ∅ → {− degD}∅, where degD ∈ Z ×Z2
is the degree of D. The action of [f ] ∈ Tr(H∗

B) on such a diagram D is given by placing 
D in the interior of the annulus and interpreting the resulting diagram as an element in 
Z(H∗

B). (As explained in Section 3.2, we always first isotope the diagrams so that any 
dots in the annular diagram are higher than any dots in the closed diagram.) Thus, if

f ∈ HOMH′
B

(
Qn

+Qm
− ,Qn

+Qm
−
)
,

is of degree deg f ∈ Z ⊗ Z2, then

[f ] ·D = f D ∈ HOMH′
B

(
{nδ, 0}∅, {(mδ, 0) − degD − deg f}∅

)

⊆ Z(H∗
B).

Note in particular that the degree of [f ] as an operator on Z(H∗
B) is

deg f + (nδ −mδ, 0) = deg f + (δ asc[f ], 0). (4.12)

Via the injection of Proposition 4.2, we have an induced action of Tr(HB) on Z(H∗
B). 

The identity morphism 1∅ of the trivial object (empty sequence) of HB is the empty 
diagram. Acting on the empty diagram gives a map

Tr(HB) → Z(H∗
B), [f ] �→ [f ] · 1∅.

We define

FB = Tr(HB) · 1∅. (4.13)

In light of Proposition 4.10 below, we call FB the diagrammatic Fock space. Let FB = h
+
B

denote the Fock space representation of hB, and let FB,F = FB ⊗Fq,π
F.
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Proposition 4.10. Assume B 
= B0 (i.e. δ > 0). We have an isomorphism of F-modules

φB : FB → FB ⊗Fq,π
F, [e+

λ ] · 1∅ �→ s+
λ := s+

λ1,1 · · · s
+
λ�,�

, λ = (λ1, . . . , λ�) ∈ P�,

(4.14)

extended by linearity. Furthermore, the diagram

Tr(HB) ⊗FB

ϕB⊗φB

FB

φB
∼=

hB ⊗ FB,F FB,F

commutes, where the horizontal arrows are given by the Fock space actions.

Proof. As in the proof of Theorem 4.5, Tr(HB) is spanned by the classes of (B�n
0 )op ⊗F

B�m
0

∼= EndH′
B
(Qn

+Qm
− ), n, m ∈ N. Now, classes of elements of EndH′

B
Qm

− have negative 
ascensions, and thus are operators on Z(H∗

B) of strictly negative degree. However, by 
[19, Prop. 8.9], Z(H∗

B) is concentrated in nonnegative degree. It follows that

FB = Tr(HB)+ · 1∅ (4.15)

Now, FB 
= 0 by [19, Th. 7.4]. (For example, a clockwise circle is mapped to n by 
the functor Fn of [19, Th. 7.4], and thus cannot be zero.) Therefore, by the Stone–von 
Neumann Theorem, FB is the Fock space representation of hB⊗Fq,π

F. (See, for example, 
[20, Th. 2.11] for a formulation of the Stone–von Neumann Theorem adapted to lattice 
Heisenberg algebras and more general Heisenberg doubles.) Note that we need to tensor 
over Fq,π with F here since the action of Tr(HB) is via the injection (4.4). The result 
now follows from Theorem 4.5. �
Remark 4.11. If δ > 0, it follows from degree considerations that the action of Tr(HB) ∼=
hB ⊗Fq,π

F on Z(H∗
B) is a lowest-weight representation (i.e. it is generated by lowest 

weight vectors). Therefore, by the Stone–von Neumann Theorem, knowing the space 
of lowest-weight vectors would yield an explicit description of Z(H∗

B). A description of 
Z(H∗

B) was conjectured in [19, Conj. 8.10].

Proposition 4.12. We have

∞∑
n=0

[(B�n)op] · 1∅ = Z(H∗
B),

where [(B�n)op] ⊆ Tr(H∗
B)+ via the first algebra homomorphism of (4.6).
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Proof. By [19, Prop. 8.9], Z(H∗
B) is spanned by products of clockwise circles carrying 

dots and right curls. Using [19, Prop. 8.8], one can nest such circles inside one another. 
It follows that Tr(H∗

B) · 1∅ = Z(H∗
B). Then it follows by degree considerations, as in the 

proof of Proposition 4.10, that Tr(H∗
B)+ · 1∅ = Z(H∗

B).
It remains to show that if z ∈ ENDHB

(Qn
+) is a diagram consisting of a permutation 

of the strands, carrying dots and right curls, then we can write [z] · 1∅ as a linear 
combination of elements of the form [z′] ·1∅, where z′ ∈ (B�m)op, i.e., where z′ does not 
contain right curls. We prove this result by induction on the number of right curls in z.

Using (3.13) and [19, (8.4)], we can move right curls to the right, modulo diagrams 
with fewer right curls (recall the notation (4.1)):

= = +
∑
b∈B

b
b∨

We can thus choose a right curl in z and move it to the rightmost strand, modulo 
diagrams with fewer right curls. Therefore we can assume one of the right curls in z is 
on the rightmost strand. But then [z] · 1∅ = [z′] · 1∅, where z′ is obtained from z by 
removing a right curl from the rightmost strand, adding a new strand on the far right, 
and adding a crossing between the two rightmost strands at the location of the removed 
right curl:

�

This completes the proof of the induction step. �
5. A bilinear form on annular diagrams

5.1. The bilinear form

Recall the functor F0 : HB → F-mod defined in [19, §7]. This functor maps the graded 
center Z(H∗

B) of the category HB to the center Z(F-mod∗) of the graded category F-mod∗

of Z-graded super vector spaces over F. Via the natural identification of Z(F-mod∗)
with F, we will view F0 as giving a map Z(H∗

B) → F.
An equivalent definition of F0 is that it is the F-linear projection

F0 : Z(H∗
B) → Z(HB) ∼= F,

of the center of the graded category H∗
B onto its degree zero piece, which is the center 

of the category HB.
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Let

ev1,−1 : Fq,π → F (5.1)

denote the evaluation at q = 1 and π = −1.

Lemma 5.1. The diagram

Tr(HB) α

ϕB

FB

F0

φB

F

hB
α′

FB,F

κ0,F

commutes, where the maps α and α′ are given by action on the vacuum vectors 1∅ and 
1
h
+
B
∈ FB, respectively, and where φB is as defined in (4.14), and κ0,F is the map (2.6)

followed by the map ev1−1.

Proof. The commutativity of the left-hand square follows from Proposition 4.10. To 
prove commutativity of the right-hand triangle, suppose λ is a nonempty partition and 
i ∈ {1, . . . , �}. Then it is immediate from the definition in [19, §7.1] that F0([e+

λ,i]) = 0, 
since the indices as described in [19, §7.1] become negative. The result then follows 
immediately from Proposition 4.10. �

It follows from Lemma 5.1 that ϕB intertwines the linear functionals

Tr(HB) → F, x �→ F0(x · 1∅), and hB → F, x �→ κ0

(
x · 1

h
+
B

)
.

Define a pairing

〈−,−〉B : Tr(HB)− × Tr(HB)+ → F, 〈x, y〉B = F0
(
(xy) · 1∅

)
. (5.2)

Diagrammatically, the pairing 〈x, y〉B is obtained by juxtaposing the diagrams for x
and y, closing off the resulting composite diagram to the right, and applying the func-
tor F0:

〈x, y〉B = F0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Remark 5.2. In fact, the pairing (5.2) can be extended to a pairing for the larger trace 
Tr(H∗

B), using the same definition. In this setting, it is more natural to consider the 
2-category version of the Heisenberg category HB (see [19, Rem. 6.1]), in which case the 
definition of the trace of a 2-category implies that we only pair elements of Tr(H∗

B)+
of ascension n with elements of Tr(H∗

B)− of ascension −n (so that their horizontal 
composition is the endomorphism of some object, as opposed to a morphism between 
distinct objects). We will not investigate the properties of this extended bilinear form in 
the current paper.

Remark 5.3. One could modify the pairing (5.2) by replacing F0 with the functor Fn

for any n ∈ N (see [19, §7]). In this case, the pairing would take values in the center 
Z(B�n-mod∗) of the graded category B�n-mod∗, which can be naturally identified with 
the center Z(B�n) of the wreath product algebra B�n. It would be interesting to further 
examine this family of pairings.

5.2. Isometries

Recalling (5.1), we let

〈−,−〉1,−1 = ev1,−1 ◦〈−,−〉 : h−B ⊗ h
+
B → F

denote the corresponding specialization of the pairing of h±B.

Corollary 5.4. The diagram

Tr(HB)− × Tr(HB)+

ϕB×ϕB

〈−,−〉B
F

h
−
B × h

+
B

〈−,−〉1,−1

commutes.

Proof. This follows directly from Lemmas 2.3 and 5.1. �
For each n ∈ N, the adjunctions in the category HB give us an automorphism of 

Fq,π-algebras

EndHB
(Qn

+)op → EndHB
(Qn

−), x �→ xrot,

given by rotating a diagram through an angle π. In this way we can define a bilinear 
form

〈−,−〉B : Tr(HB)+ × Tr(HB)+ → F, 〈x, y〉B = 〈xrot, y〉B = F0
(
(xroty) · 1∅

)
. (5.3)
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Theorem 5.5. Suppose B0 = F, so that h+
B = Sym. Then the algebra isomorphism 

ϕB : Tr(HB)+ → h
+
B = Sym is an isometry, where Tr(HB)+ is equipped with the 

bilinear form (5.3) and Sym is equipped with the Jack bilinear form at parameter 
dimBeven − dimBodd (see (2.8)).

Proof. Since B0 = F, the algebra B has only one simple module (up to grading and 
parity shift), namely the one-dimensional module B/ 

⊕
n>0 Bn. The projective cover of 

this simple module is B itself. Then we have HOMB(B, B) ∼= B, as Zq,π-modules. For 
n ∈ N, we have (P+

n )rot = P−
n , and

〈p−n , p+
m〉 = δn,mnθn(grdimB) =⇒ 〈p+

n , p
+
m〉1,−1 = δn,mn(dimBeven − dimBodd),

which coincides with the Jack bilinear form at parameter dimBeven − dimBodd. Since 
any Hopf pairing on Sym is uniquely determined by its value on the power sums, the 
proposition follows. �
Remark 5.6. If we fix k ∈ N+, then the algebra B = F[x]/(xk) is naturally a Z-graded 
Frobenius algebra, where we declare x to be even of Z-degree one. Since B has only one 
indecomposable projective module, we have Tr(HB)± ∼= Sym. The pairing (5.2) then 
corresponds to the Jack pairing described in (2.8) at parameter k.

On the other hand, if we let B be the cohomology of a surface of genus g, then B
is a supercommutative Frobenius algebra with dimBeven = 2 and dimBodd = 2g. Thus 
the pairing (5.2) corresponds to the Jack pairing described in (2.8) at parameter 2 − 2g, 
allowing us to realize the Jack pairing at negative parameters.

Example 5.7. Suppose B = F[x]/(xk), with trace map given by trB(
∑k−1

j=1 ajx
j) = ak−1. 

The first power sum p+
1 corresponds to the clockwise circle P+

1 , and 
(
P+

1
)rot = P−

1 . We 
compute

〈P−
1 , P+

1 〉B = (3.14)= +
k−1∑
j=0

xk−j−1

xj

(3.13)= +
k−1∑
j=0

xk−1
(3.16)= k.

This agrees with the inner product of p1 with itself in the Jack inner product at Jack 
parameter k = dimB.

Remark 5.8. The Heisenberg algebra hB is a Heisenberg double, whose definition involves 
a Hopf pairing between two Hopf algebras. This pairing is thus implicit in the algebra 
structure of hB, which was realized via Grothendieck group categorification in [19] and 
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via trace categorification in Theorem 4.5. In particular, for the choice B = F[x]/(xk), 
the pairing in hB is the specialization (2.7) of the Macdonald pairing. The inclusion of 
Tr(HB) into Tr(H∗

B), which collapses the grading (see Proposition 4.2), corresponds to 
the q → 1 limit that yields the Jack pairing from the Macdonald pairing.

6. Filtrations and associated graded algebras

We conclude the paper with a discussion of a natural filtration on the center Z(H∗
B)

arising from the ascension grading on the trace Tr(H∗
B).

By Proposition 4.12, we have an F-vector space filtration of Z(H∗
B) given by

0 ⊆ Z0 ⊆ Z1 ⊆ Z2 ⊆ · · · , where Zn =
n∑

m=0
[(B�m)op] · 1∅. (6.1)

We then have the associated graded F-vector space

grZ(H∗
B) =

∞⊕
n=0

Zn/Zn−1, (6.2)

where we adopt the convention that Z−1 = 0. For a ∈ Z(H∗
B), we let gr(a) denote its 

image under the usual F-linear map from Z(H∗
B) to grZ(H∗

B).
The center Z(H∗

B) is naturally an F-algebra, with multiplication given by juxta-
position of diagrams. The following results gives a precise relationship between the 
multiplicative structure on Tr(H∗

B) and the multiplicative structure on Z(H∗
B). Through-

out this section, in order to simplify diagrams, we will draw a single arc to represent 
multiple strands.

Proposition 6.1. If n1, n2 ∈ N+, z1 ∈ An1 , and z2 ∈ An2 , then

gr

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1
z2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= gr

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

z1
z2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Proof. It suffices to consider z2 of the form cz3 for some c ∈ B⊗n2 and z3 ∈ FSn2 . Using 
(3.10), (3.11) and (3.13) we have
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z1
z2

= z1
z2

= (−1)|c||z1| z1
z3

c

.

Now, by [19, Lem. 8.2] we can use triple point moves for strands of any possible orien-
tation. Thus, we can pull all the strands emanating from the box labeled z1 through the 
box labeled z3:

z1
z3

c

= z1
z3

c

We can then use (3.14) to pull apart the double crossings one by one, introducing terms 
with dots and fewer strands:

z1
z3

c

≡ z1
z3

c

= (−1)|c||z1| z1
z2

Here we used the symbol ≡ for diagrams to indicate that they have the same image in 
the graded vector space. �
Corollary 6.2. The filtration (6.1) is a filtration of F-algebras and hence (6.2) is the 
associated graded algebra.

Proof. Consider the filtration on Tr(H∗
B) induced by the ascension grading. Then the 

action of Tr(H∗
B) on 1∅ sends the n-th step of the filtration on Tr(H∗

B) to Zn. The 
corollary then follows from Proposition 6.1. �
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Proposition 6.3. For n ∈ N+ and b ∈ B we have

gr
(((

b⊗ 1⊗(n−1)
B

)
◦ P+

n

)
· 1∅

)
= gr

(
n− 1

b

)
.

(Here ◦ denotes the composition in ENDHB
(Qn

+).)

Proof. For m ∈ N+, let wm = (m, m − 1, . . . , 2, 1) ∈ Sm. In what follows, we use the 
symbol ≡ for diagrams to indicate that they have the same image in the associated 
graded vector space. By [19, (8.3)], we have

((
b⊗ 1⊗(n−1)

B

)
◦ P+

n

)
· 1∅ =

⎡
⎢⎢⎢⎣ wn

· · ·

· · ·

b
⎤
⎥⎥⎥⎦ · 1∅ =

⎡
⎢⎢⎢⎣ wn−1

· · ·

· · ·

b
⎤
⎥⎥⎥⎦ · 1∅

=

⎡
⎢⎢⎢⎣ wn−1

· · ·

· · ·

b
⎤
⎥⎥⎥⎦ · 1∅ −

∑
c∈B

⎡
⎢⎢⎢⎣ wn−2

· · ·

· · ·

c∨

c

b
⎤
⎥⎥⎥⎦ · 1∅ ≡

⎡
⎢⎢⎢⎣ wn−1

· · ·

· · ·

b
⎤
⎥⎥⎥⎦ · 1∅

=

⎡
⎢⎢⎢⎣ wn−2

· · ·

· · ·

b
⎤
⎥⎥⎥⎦ · 1∅ ≡

⎡
⎢⎢⎢⎣ wn−2

· · ·

· · ·

2b
⎤
⎥⎥⎥⎦ · 1∅ ≡ · · · ≡

⎡
⎢⎢⎢⎣ n− 1

b
⎤
⎥⎥⎥⎦ · 1∅ �

Remark 6.4. The clockwise circle appearing in the statement of Proposition 6.3 is denoted 
cb,n−1 in [19, (8.9)]. It was shown in [19, Prop. 8.9] that such diagrams generate Z(H∗

B)
as an algebra, a result that also follows from Propositions 4.12 and 6.3.

As a corollary of Propositions 6.1 and 6.3, we obtain a basis of the center of Z(HF). 
See [11] for a different proof of this statement.

Corollary 6.5. If B = F, the elements P+
λ · 1∅ form a basis of Z(HF).

Proof. It was shown in [10, Prop. 3] that Z(HB) is isomorphic to the polynomial algebra 
F[c0, c1, c2, . . . ], where ck is a clockwise circle with k right curls. By Proposition 6.3 and 
Proposition 6.1, we have

gr(P+
λ · 1) = gr(cλ1cλ2 · · · cλ�

), λ = (λ1, . . . , λ�) ∈ P.

The result follows. �
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Remark 6.6. In the case B = F, the main result of [11] identifies Z(HF) with the algebra 
Sym′ of shifted symmetric functions defined by Okounkov and Olshanski in [16]. The 
algebra Sym′ is a filtered algebra whose associated graded algebra is the algebra Sym
of symmetric functions. Moreover, in the case B = F, the diagrams in the statement of 
Proposition 6.3 inherit an explicit combinatorial interpretation in the language of shifted 
symmetric functions. In particular, the isomorphism

Z(HF) ∼= Sym′,

is an isomorphism of filtered algebras, and the diagram P+
n · 1∅ is mapped to the shifted 

power sum denoted p#
n in [16]; the diagram

n− 1 ,

on the other hand, is mapped to the nth Boolean cumulant of Kerov’s transition measure. 
(We refer to [11] for the precise definitions of both shifted symmetric functions and of 
Kerov’s transition measure.) Proposition 6.3 then corresponds to the fact that the shifted 
power sum and the Boolean cumulant are both deformations of the power sum symmetric 
function.

7. Further directions

The current paper naturally suggests several interesting directions for future research. 
We mention some of these here.

More general Frobenius algebras

We have made several simplifying assumptions in the current paper. In particular, 
while the Heisenberg categories HB defined in [19] are valid for an arbitrary graded 
Frobenius superalgebra B, we assume in the current paper that the trace map of B is 
supersymmetric and even. (In particular, the Nakayama automorphism of B is trivial.) 
We also assume that all simple B-modules are of type M (i.e. not isomorphic to their 
parity shifts). See Section 2.2. Allowing B to have simple modules of type Q would result 
in the appearance of the space of Schur Q-functions. On the other hand, allowing the 
Nakayama automorphism to be nontrivial (e.g. equal to the parity involution) would 
introduce twisted Heisenberg algebras into the picture (see [7,9] and [19, Rem. 6.2]). It 
would be interesting to pursue these generalizations.

Connections to W-algebras

It is shown in [6, Th. 1] that Tr(HF) is isomorphic to a quotient of the W-algebra 
W1+∞. The action of Tr(HF) on Z(HF) then gives a graphical interpretation of the action 
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of W1+∞ on the space of shifted symmetric functions, which is identified with a level one 
irreducible representation of W1+∞. In the more general setting, we expect that Tr(H∗

B)
should be related to W-algebras associated to the lattice K0(B), as conjectured in [6].

Wreath product algebras

As described in [19, §7], the categories H∗
B act on categories of modules over wreath 

product algebras B⊗n
� Sn, n ∈ N. Combined with the results of the current paper, 

this yields actions of Heisenberg algebras on the centers of these module categories. One 
should thus be able to use the diagrammatics of the categories H∗

B to study these centers. 
For example, one should be able to develop a graphical calculus for centers of wreath 
product algebras in terms of closed diagrams in the categories H∗

B.

Jack symmetric functions

In the current paper, we develop a categorification of the inner product used to define 
the Jack symmetric functions (see Theorem 5.5). In would interesting to try to give a 
graphical description of the Jack symmetric functions themselves. That is, one would 
like to describe natural annular diagrams in Tr(HB) that correspond to these functions.

Hilbert schemes

There is a well known relationship, due to Haiman [8], between the C∗×C
∗-equivariant 

K-theory of the Hilbert scheme Hilb(C2) of points on C2 and the Macdonald ring of 
symmetric functions, which realizes the basis of Macdonald polynomials as classes of 
C

∗ × C
∗-fixed points in equivariant K-theory. On the other hand, there is a parallel 

description of the Jack symmetric functions using equivariant homology, due to Naka-
jima [15] and Li–Qin–Wang [13]. The relationship between K-theory and homology is 
analogous to the relationship between the Grothendieck group and trace in the current 
paper. It would be interesting to directly connect the constructions of the present paper 
to the works [13,15], by, for example, constructing a categorical Heisenberg action on the 
equivariant derived category of Hilb(C2).

Appendix A. Presentations of lattice Heisenberg algebras and the Macdonald pairing

In this appendix, we first deduce presentations of lattice Heisenberg algebras that 
appear naturally in categorification. These presentations are used in the proof of Propo-
sition 2.2. In particular, we find presentations of lattice Heisenberg algebras arising from 
the Macdonald inner product that may be of independent interest. We then explain how 
the limiting procedure that produces the Jack inner product from the Macdonald inner 
product (see Section 2.4) can be interpreted in terms of lattice Heisenberg algebras.
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A.1. Presentations

Let us recall some facts about various generating sets for Sym. The generating func-
tions for the elementary and complete symmetric functions are

E(z) =
∑
r≥0

erz
t =

∏
i≥1

(1 + xiz), H(z) =
∑
r≥0

hrz
r =

∏
i≥1

(1 − xiz)−1.

The generating function for the power sums is

P (z) =
∑
r≥1

prz
r−1 =

∑
i≥1

xi

1 − xiz
=
∑
i≥1

d

dz
log 1

1 − xiz
.

Thus

P (z) = d

dz
logH(z) = H ′(z)/H(z). (A.1)

Similarly,

P (−z) = d

dz
logE(z) = E′(z)/E(z). (A.2)

For a finite-dimensional Z-graded super vector space V , we define its graded dimension 
to be

grdimV :=
∑

s∈Z, ε∈Z2

qsπε dimVs,ε ∈ Zq,π.

Proposition A.1. The algebra hL is generated by the complete symmetric functions h±
n,i, 

n ∈ N+, i ∈ I, with relations

[h+
n,i, h

+
m,j ] = 0, [h−

n,i, h
−
m,j ] = 0, h+

n,ih
−
m,j =

min(n,m)∑
�=0

grdimS�(V )h−
m−�,jh

+
n−�,i,

n,m ∈ N+, i, j ∈ I,

where V is a Z-graded super vector space with grdimV = 〈i, j〉.

Proof. By the general theory of Heisenberg doubles, it suffices to compute the commu-
tation relations between the h−

n,i and h+
m,j . By (A.1), we have

H(z) = exp
∑
n≥1

pn
n
zn.
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Now,

⎡
⎣∑
r≥1

p+
r,i

r
zr,

∑
k≥1

p−k,j
k

wk

⎤
⎦

=
∑
r≥1

θr(grdimV )
r

zrwr

=
∑
s,ε

(−1)ε(dimVs,ε)
∑
r≥1

((−π)εqszw)r

r
=
∑
s,ε

(−1)ε+1(dimVs,ε) log(1 − (−π)εqszw).

Therefore,

∑
n,m≥0

h+
n,ih

−
m,jz

nwm = H+
i (z)H−

j (w)

= exp

⎡
⎣∑
r≥1

p+
r,i

r
zr,

∑
k≥1

p−k,j
k

wk

⎤
⎦H−

j (w)H+
i (z)

=
(∏

s∈Z

(1 + πqszw)dim Vs,1

(1 − qszw)dim Vs,0

) ∑
n,m≥0

h−
m,jh

+
n,iz

nwm

=

⎛
⎝∑

�≥0

z�w� grdimS�(V )

⎞
⎠ ∑

n,m≥0
h−
m,jh

+
n,iz

nwm,

and the result follows by equating coefficients. �
Proposition A.2. The algebra hL is generated by the complete symmetric functions h+

n,i

and elementary symmetric functions e−n,i, n ∈ N+, i ∈ I, with relations

[e−n,i, e
−
m,j ] = 0, [h+

n,i, h
+
m,j ], h+

n,ie
−
m,j =

min(n,m)∑
�=0

grdim Λ�(V )e−m−�,jh
+
n−�,i,

n,m ∈ N+, i, j ∈ I,

where V is a Z-graded super vector space with grdimV = 〈i, j〉.

Proof. By the general theory of Heisenberg doubles, it suffices to compute the commu-
tation relations between the h+

n and e−m. By (A.2), we have

E(z) = exp
∑
n≥1

(−1)n−1 pn
n
zn.
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Now,

⎡
⎣∑
r≥1

(−1)r−1 p
+
r,i

r
zr,

∑
k≥1

p−k,j
k

wk

⎤
⎦

=
∑
r≥1

(−1)r−1 θr(grdimV )
r

zrwr

= −
∑
s,ε

(−1)ε(dimVs,ε)
∑
r≥1

(−(−π)εqszw)r

r
=
∑
s,ε

(−1)ε(dimVs,ε) log(1 + (−π)εqszw).

Therefore,

∑
n,m≥0

h+
n,ie

−
m,jz

nwm = H+
i (z)E−

j (w)

= exp

⎡
⎣∑
r≥1

(−1)r−1 p
+
r,i

r
zr,

∑
k≥1

p−k,j
k

wk

⎤
⎦E−

j (w)H+
i (z)

=
(∏

s∈Z

(1 + qszw)dim Vs,0

(1 − πqszw)dim Vs,1

) ∑
n,m≥0

e−m,jh
+
n,iz

nwm

=

⎛
⎝∑

�≥0

z�w� grdim Λ�(V )

⎞
⎠ ∑

n,m≥0
e−mh+

n z
nwm,

and the result follows by equating coefficients. �
Remark A.3. By applying the Hopf automorphism of Sym that interchanges en and hn, 
we can also obtain presentations in terms of e±n,i and in terms of h−

n,i and e+
n,i.

Remark A.4. In the case L = Z, with multiplication as the lattice pairing, Proposi-
tions A.1 and A.2 are well known. For certain other lattices, these presentations also 
occur in [4, §2.2] and [3, §5]. The presentations of these propositions also appear in [19, 
Prop. 5.5]. However, in that paper there are no pn and so the connection to the power 
sum presentation is not given. In the ungraded non-super case, the maps θn are trivial, 
so the situation simplifies greatly. In this setting, Proposition A.1 essentially appears in 
[12, Lem. 1.2].

A.2. More general gradings

The lattice Heisenberg algebra construction of Section 2 can be generalized somewhat. 
In particular, for r ∈ N+, we can replace Zq,π everywhere by the algebra
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Ẑq1,...,qr,π ⊆ Z�q±1
1 , . . . , q±1

r �[π]/(π2 − 1)

consisting of Laurent series

∑
(s1,...,sr,ε)∈Zr⊗Z2

as1,...,sr,εq
s1
1 · · · qsrr πε, as1,...,sr,ε ∈ Z,

such that there exists N ∈ Z satisfying

s1, . . . , sr < N =⇒ as1,...,sr,ε = 0.

We define F̂q1,...,qs,ε similarly, and we replace θn, n ∈ N+, by the F-algebra homomor-
phism

θn : F̂q1,...,qs,ε → F̂q1,...,qs,ε, θn(qi) = qni , θn(π) = −(−π)n, i ∈ {1, . . . , r}.

Remark 2.1, Proposition A.1, and Proposition A.2 continue to hold in this more 
general setting, where the graded vector space V appearing there is now Zr ×Z2-graded 
and we require that its graded dimension

grdimV :=
∑

s1,...,sr∈Z, ε∈Z2

qs11 · · · qsrr πε dimVs1,...,sr,ε

lie in Ẑq1,...,qr,π.

A.3. The Macdonald inner product

Consider the symmetric superalgebra

S(x, y) := T (Cx⊕ Cy)/〈ab− (−1)āb̄ba | a, b ∈ {x, y}〉,

where T (Cx ⊕ Cy) denotes the tensor superalgebra on the super vector space spanned 
by x and y, and angled brackets denote the ideal generated by the set they enclose. If 
we declare deg x = (1, 0, 0) ∈ Z

2 × Z2 deg y = (0, 1, 1) ∈ Z
2 × Z2, then

grdimS(x, y) = 1 + πq2
1 − q1

∈ Ẑq1,q2,π. (A.3)

Therefore, the pairing (2.3) becomes

〈p−λ , p+
μ 〉 = δλ,μzλ

�(λ)∏ 1 + πqλi
2

1 − qλi
, λ, μ ∈ P. (A.4)
i=1 1
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If we specialize to π = −1, this is precisely the Macdonald pairing, used to define the 
Macdonald symmetric functions. See for example, [14, (VI.1.5)], where q1 and q2 are 
denoted t and q, respectively.

If we fix a rank one lattice L generated by v with 〈v, v〉 = grdimS(x, y), then Propo-
sitions A.1 and A.2 give presentations of hL in terms of the graded dimensions of the 
symmetric and exterior powers of S(x, y). These graded dimensions can be computed 
explicitly, as shown by the following two propositions.

Proposition A.5. If V is a Z × Z × Z2-graded vector space with graded dimension 
grdimV = 1+πq2

1−q1
, then

grdimSk(V ) = (1 + πq2q
k−1
1 )(1 + πq2q

k−2
1 ) · · · (1 + πq2q1)(1 + πq2)

(1 − qk1 )(1 − qk−1
1 ) · · · (1 − q1)

.

Proof. Since
∑
k≥0

zk grdimSk(V ) =
∏
n≥0

(1 + πq2q
n
1 z)

∏
n≥0

1
1 − qn1 z

,

it suffices to show that

∑
k≥0

(1 + πq2q
k−1
1 )(1 + πq2q

k−2
1 ) · · · (1 + πq2q1)(1 + πq2)

(1 − qk1 )(1 − qk−1
1 ) · · · (1 − q1)

zk

=
∏
n≥0

(1 + πq2q
n
1 z)

∏
n≥0

1
1 − qn1 z

.

Define ck, k ≥ 0, by

∑
k≥0

ckz
k =

∏
n≥0

(1 + πq2q
n
1 z)

∏
n≥0

1
1 − qn1 z

.

Clearly c0 = 0. Now,

∑
k≥0

ckz
k =

∏
n≥0

(1 + πq2q
n
1 z)

∏
n≥0

1
1 − qn1 z

= 1 + πq2z

1 − z

∏
n≥1

(1 + πq2q
n
1 z)

∏
n≥1

1
1 − qn1 z

= 1 + πq2z

1 − z

∏
n≥0

(1 + πq2q
n
1 (q1z))

∏
n≥1

1
1 − qn1 (q1z)

= 1 + πq2z

1 − z

∑
k≥0

ck(q1z)k.
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Thus

(1 − z)
∑
k≥0

ckz
k = (1 + πq2z)

∑
k≥0

ckq
k
1z

k.

Therefore, for k ≥ 1, we have

ck − ck−1 = qk1ck + πq2q
k−1
1 ck−1 =⇒ ck = 1 + πq2q

k−1
1

1 − qk1
ck−1.

The result follows. �
Proposition A.6. If V is a Z × Z × Z2-graded vector space with graded dimension 
grdimV = 1+πq2

1−q1
, then

grdim Λk(V ) = (πq2 + qk−1
1 )(πq2 + q

(k−2)
1 ) · · · (πq2 + 1)

(1 − qk1 )(1 − qk−1
1 ) · · · (1 − q1)

.

Proof. Since
∑
k≥0

zk grdimSk(V ) =
∏
n≥0

1
1 − πq2qn1 z

∏
n≥0

(1 + qn1 z),

it suffices to show that

∑
k≥0

(πq2 + qk−1
1 )(πq2 + q

(k−2)
1 ) · · · (πq2 + 1)

(1 − qk1 )(1 − qk−1
1 ) · · · (1 − q1)

zk =
∏
n≥0

1
1 − πq2qn1 z

∏
n≥0

(1 + qn1 z).

Define ck, k ≥ 0, by

∑
k≥0

ckz
k =

∏
n≥0

1
1 − πq2qn1 z

∏
n≥0

(1 + qn1 z).

Clearly c0 = 0. Now,

∑
k≥0

ckz
k =

∏
n≥0

1
1 − πq2qn1 z

∏
n≥0

(1 + qn1 z)

= 1 + z

1 − πq2z

∏
n≥1

1
1 − πq2qn1 z

∏
n≥0

(1 + qn1 z)

= 1 + z

1 − πq2z

∏
n≥0

1
1 − πq2qn1 (q1z)

∏
n≥0

(1 + qn1 (q1z))

= 1 + z

1 − πq2z

∑
k≥0

ck(q1z)k.
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Thus

(1 − πq2z)
∑
k≥0

ckz
k = (1 + z)

∑
k≥0

ckq
k
1z

k.

It follows that, for k ≥ 1, we have

ck − πq2ck−1 = qk1ck + qk−1
1 ck−1 =⇒ ck = πq2 + qk−1

1
1 − qk1

ck−1.

The result follows. �
A.4. Passing to the Jack limit

Setting q = q2 = qk1 and π = −1 in (A.4) yields the pairing (2.7). The relationship 
between the choice V = C[x]/(xk) of Section 2.4 and the S(x, y) of Section A.3 is as 
follows. For k ≥ 0, define a differential ∂k : S(x, y) → S(x, y) by setting

∂k(y) = xk, ∂k(x) = 0,

and extending ∂k to the rest of S(x, y) via the Leibnitz rule ∂k(fg) = ∂k(f)g +
(−1)|f |f∂k(g). The differential ∂k endows S(x, y) with the structure of a dg-algebra, 
which is quasi-isomorphic to its cohomology

H∗(S(x, y), ∂k) ∼= C[x]/(xk),

where C[x]/(xk) is regarded as a dg-algebra with zero differential.
In light of the above, one may view the process of “turning on” the differential ∂k as 

a categorification of the process of specialising q2 = qk1 .
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