JOURNAL OF COLLOID AND INTERFACE SCIENCE | 卷:453 |
Adsorption mechanisms of emerging micro-pollutants with a clay mineral: Case of tramadol and doxepine pharmaceutical products | |
Article | |
Thiebault, Thomas1  Guegan, Regis1  Boussafir, Mohammed1  | |
[1] Univ Orleans, CNRS, UMR 7327, Inst Sci Terre Orleans, F-45071 Orleans 2, France | |
关键词: Pharmaceutical products; Adsorption; Clay mineral; Amorphous systems; | |
DOI : 10.1016/j.jcis.2015.04.029 | |
来源: Elsevier | |
【 摘 要 】
A sodium exchanged smectite clay mineral (Mt) was used as geo-sorbent for the adsorption of tramadol and doxepin: two pharmaceutical products (PPs) defined as emerging pollutants due to their presence at significant concentration in numerous water compartments. The adsorption isotherms for both the temperatures of 20 and 40 degrees C and the derived data determined through the fitting procedure by using Langmuir, Freundlich and Dubinin-Radushkevich equation models explicitly pointed out that the sorption of both tramadol and doxepin is mainly driven by electrostatic interaction. The studied PPs are intercalated in a monolayer arrangement within the interlayer space through a cation exchange in stoichiometric proportion with the Na+ cations leading to adsorbed PPs amounts that match the cation exchange capacity (CEC) of Mt. Due to their hydrophobic character, additional doxepin molecules could be adsorbed by weak molecular interaction driving to an increase of the adsorbed amount beyond the CEC at low temperature (20 degrees C). The confinement of PPs within the interlayer space of Mt confirms the use of clay minerals as potential material for the wastewater treatment as well as it drives to an amorphous or glassy state, which can find echo in biopharmaceutical applications for a controlled release of PPs. (C) 2015 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jcis_2015_04_029.pdf | 1282KB | download |