期刊论文详细信息
JOURNAL OF COLLOID AND INTERFACE SCIENCE 卷:455
The retention of liquid by columnar nanostructured surfaces during quartz crystal microbalance measurements and the effects of adsorption thereon
Article
Rodenhausen, Keith B.1,2  Davis, Ryan S.1,2  Sekora, Derek1,2  Liang, Dan1,2  Mock, Alyssa1,2  Neupane, Rajeev1,2  Schmidt, Daniel1,2,3  Hofmann, Tino1,2  Schubert, Eva1,2  Schubert, Mathias1,2 
[1] Univ Nebraska, Dept Elect & Comp Engn, Lincoln, NE 68508 USA
[2] Univ Nebraska, Ctr Nanohybrid Funct Mat, Lincoln, NE 68508 USA
[3] Natl Univ Singapore, Singapore Synchrotron Light Source, Singapore 117603, Singapore
关键词: Quartz crystal microbalance;    Generalized ellipsometry;    Solid-liquid interface;    Nanostructured surface;    Adsorption;    Porosity;   
DOI  :  10.1016/j.jcis.2015.05.038
来源: Elsevier
PDF
【 摘 要 】

Hypothesis: A surface comprising spatially coherent columnar nanostructures is expected to retain intercolumnar liquid during a quartz crystal microbalance measurement due to the surface structure. Part of the liquid retained by the nanostructures may then be displaced by adsorbate. Experiments: Slanted columnar nanostructure thin films were designed to vary in height but remain structurally similar, fabricated by glancing angle deposition, and characterized by generalized ellipsometry. A frequency overtone analysis, introduced here, was applied to analyze quartz crystal microbalance data for the exchange of isotope liquids over the nanostructured surfaces and determine the areal inertial mass of structure-retained liquid. The adsorption of cetyltrimethylammonium bromide onto nanostructures was investigated by simultaneous quartz crystal microbalance and generalized ellipsometry measurements. Findings: The areal inertial mass of structure-retained liquid varies linearly with nanostructure height. The proportionality constant is a function of the surface topography and agrees with the generalized ellipsometry-determined nanostructure film porosity, implying that nearly all intercolumnar liquid is retained. We report that for adsorption processes within porous nanostructured films, the quartz crystal microbalance is sensitive not to the combined areal inertial mass of adsorbate and retained liquid but rather to the density difference between adsorbate and liquid due to the volume exchange within the nanostructure film. (C) 2015 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcis_2015_05_038.pdf 1340KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次