期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:266
About the entropic structure of detailed balanced multi-species cross-diffusion equations
Article
Daus, Esther S.1  Desvillettes, Laurent2  Dietert, Helge2 
[1] Vienna Univ Technol, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
[2] Univ Paris Diderot, CNRS, IMJ PRG, F-75013 Paris, France
关键词: Population dynamics;    Shigesada-Kawasaki-Teramoto system;    Mean-field limit;    Detailed balance;    Entropy method;    Onsager's principle;   
DOI  :  10.1016/j.jde.2018.09.020
来源: Elsevier
PDF
【 摘 要 】

This paper links at the formal level the entropy structure of a multi-species cross-diffusion system of Shigesada-Kawasaki-Teramoto (SKT) type (cf. [1]) satisfying the detailed balance condition with the entropy structure of a reversible microscopic many-particle Markov process on a discretised space. The link is established by first performing a mean-field limit to a master equation over discretised space. Then the spatial discretisation limit is performed in a completely rigorous way. This by itself provides a novel strategy for proving global existence of weak solutions to a class of cross-diffusion systems. (C) 2018 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2018_09_020.pdf 903KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次