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Abstract

This paper links at the formal level the entropy structure of a multi-species cross-diffusion system of 
Shigesada–Kawasaki–Teramoto (SKT) type (cf. [1]) satisfying the detailed balance condition with the en-
tropy structure of a reversible microscopic many-particle Markov process on a discretised space. The link is 
established by first performing a mean-field limit to a master equation over discretised space. Then the spa-
tial discretisation limit is performed in a completely rigorous way. This by itself provides a novel strategy 
for proving global existence of weak solutions to a class of cross-diffusion systems.
© 2018 Elsevier Inc. All rights reserved.

MSC: 35K55; 35K57; 35Q92; 60J28; 82C22; 92D25

✩ The first author acknowledges partial support from the Austrian Science Fund (FWF), grants P27352 and P30000. 
The research leading to this paper was also partially funded by the French “ANR blanche” project Kibord: ANR-13-
BS01-0004, by the GDRI of the CNRS ReaDiNet, Reaction–Diffusion Network in Biomedecine, and by Université 
Sorbonne Paris Cité, in the framework of the “Investissements d’Avenir”, convention ANR-11-IDEX-0005. The last 
author acknowledges partial support from the People Programme (Marie Curie Actions) of the European Union’s Seventh 
Framework Programme (FP7/2007-2013) under REA grant agreement n. PCOFUND-GA-2013-609102, through the 
PRESTIGE programme coordinated by Campus France.

* Corresponding author.
E-mail addresses: esther.daus@tuwien.ac.at (E.S. Daus), desvillettes@math.univ-paris-diderot.fr (L. Desvillettes), 

dietert@math.univ-paris-diderot.fr (H. Dietert).
https://doi.org/10.1016/j.jde.2018.09.020
0022-0396/© 2018 Elsevier Inc. All rights reserved.

http://www.sciencedirect.com
https://doi.org/10.1016/j.jde.2018.09.020
http://www.elsevier.com/locate/jde
mailto:esther.daus@tuwien.ac.at
mailto:desvillettes@math.univ-paris-diderot.fr
mailto:dietert@math.univ-paris-diderot.fr
https://doi.org/10.1016/j.jde.2018.09.020


JID:YJDEQ AID:9551 /FLA [m1+; v1.288; Prn:24/09/2018; 15:05] P.2 (1-22)

2 E.S. Daus et al. / J. Differential Equations ••• (••••) •••–•••
Keywords: Population dynamics; Shigesada–Kawasaki–Teramoto system; Mean-field limit; Detailed balance; Entropy 
method; Onsager’s principle

1. Introduction

We consider the population dynamics cross-diffusion system model coming out of the clas-
sical paper by Shigesada, Kawasaki and Teramoto [1] (SKT model) for n ≥ 2 species without 
reaction term. For clarity, we suppose that the species live on the torus T = [0, 1) with periodic 
boundary conditions. Thus, the density ui := ui(t, x) of species i = 1, . . . , n evolves as

∂tui = �

⎛⎝Diui +
n∑

j=1

Aijujui

⎞⎠ (1)

with diffusion constants Di ≥ 0, self-diffusion coefficients Aii > 0 and cross-diffusion coeffi-
cients Aij ≥ 0 for i, j = 1, . . . , n.

For this system (1), Chen, Daus and Jüngel showed in [2] that

H(u) :=
∫
T

n∑
i=1

πi

[
ui log(ui(x)) − ui(x) + 1

]
dx (2)

with positive constants πi > 0 for i = 1, . . . , n is an entropy (Lyapunov) functional if the follow-
ing condition holds

πiAij = πjAji for i, j = 1, . . . , n, (3)

which for n ≥ 3 gives a constraint on the cross-diffusion coefficients Aij . Under this condition 
(they called it detailed balance condition), the authors were then able to construct global weak 
solutions to (1) for an arbitrary number of population species with the help of the gradient esti-
mates coming from the entropy production of the entropy (2).

The motivation of this work is to understand the origin of the entropy (2) under the condi-
tion (3). In particular, we wanted to link the condition (3) to the detailed balance equation of 
finite-state Markov chains, where the detailed balance equation has been identified as necessary 
and sufficient condition for the existence of a gradient flow structure with respect to the relative 
entropy [3–5].

In this work, we establish the formal link between the entropy structure of (1) and the entropy 
structure of a microscopic many-particle Markov process on a discrete space. The link is estab-
lished in two steps. In the first step, we perform a formal mean-field limit keeping the spatial 
discretisation fixed. The resulting system is a quadratic master equation. In the second step, we 
then refine the spatial discretisation and arrive at the cross-diffusion system (1).

In this many-particle derivation, the condition (3) enters as a natural necessary condition for 
the construction of a reversible Markov process and the constants πi can be interpreted as relative 
portions in the many-particle model.

In both limits, the entropy structure is preserved and, in particular, the master equation on 
the discretised space has the corresponding entropy structure. This allows us to perform the 
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spatial discretisation limit in a rigorous way, which is an interesting result by itself (which will 
be discussed after the statement of our main Theorem 8 in Section 3).

Note that the transfer of the entropy structure from a microscopic model towards a mesoscopic 
model has been extensively studied for equations belonging to other classes. The spatially ho-
mogeneous Boltzmann equation is for example a model in which many results have been proven 
(cf. [6]). It shares some features with the SKT model (quadraticity of course, but also diffusive 
properties when the angular cutoff of Grad is not performed).

For the second rigorous limit from the space discretised master equation to the SKT cross-
diffusion system, similar discrete in space approximation schemes for the SKT model were 
studied in [7–9], but they are not necessarily entropy preserving. Very recently, an entropy pre-
serving numerical scheme was proposed in [10], though not for the SKT model, but for a volume-
filling type cross-diffusion system.

Other approaches have been proposed for obtaining cross-diffusion equations of SKT type out 
of microscopic models. First (stochastic) approaches from particle models to reaction–diffusion 
systems trace back to Oelschläger [11] in the late 1980s. Recently, Fontbona and Méléard [12]
managed to prove the convergence from realistic individual-based models in a suitable limit 
towards non-local (convoluted w.r.t. space) SKT-type systems. Note that because of the lacking 
evidence of existence and uniqueness of strong solutions to the limiting model, it looks difficult 
to provide a rigorous proof of passage to the limit towards the full (i.e. nontriangular) local 
multi-species SKT system when one starts with a microscopic model (whether on a discrete set 
of positions or on a continuous set of positions, using a nonlocality which disappears in the limit). 
Note, however, that very recently, Moussa [21] managed to prove the convergence in the case of 
strictly triangular limiting local SKT model with bounded coefficients starting on a continuous 
set of positions with a nonlocality which disappears in the limit by using duality techniques 
(introduced for instance by Pierre and Schmitt in [13]).

2. Formal mean-field limit

For the microscopic derivation, we first consider a many-particle system on a fixed spatial 
discretisation. The spatial discretisation consists of M positions given by

�M = {xk : k = 0, . . . ,M − 1} with xk = k

M
= kh, (4)

which is understood in the periodic setting, and where we set h = M−1.
Given the relative fractions π1, . . . , πn with πi > 0 between the species, we consider the 

many-particle system with �πiN� particles of species i = 1, . . . , n, where �πiN� denotes the 
largest integer smaller than πiN . The aim of this section is to obtain a suitable master equation 
when N → ∞.

The microscopic configuration is given by

x := (x1
1 , . . . , x

�π1N�
1 , x1

2 , . . . , x
�π2N�
2 , . . . . . . , x1

n, . . . , x�πnN�
n ) ∈ �

⊗(�π1N�+···+�πnN�)
M =: �N

M

and this configuration is set to evolve in time as a time-continuous Markov chain.
The distribution over the microscopic configurations at time t is given by a density μN

t ∈
P(�N

M). In terms of statistical physics, this means that we consider an ensemble over the micro-
scopic configurations.
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We assume that the particles within a species are indistinguishable. The class of such measures 
is denoted by Ps(�

N
M) and defined as follows:

Definition 1 (Indistinguishability). A measure μ ∈ P(�N
M) is in Ps(�

N
M) if and only if for all 

permutations σ1, . . . , σn of resp. {1, .., �π1N�}, . . . , {1, .., �πnN�} and configurations x ∈ �N
M it 

holds that

μN(x
σ1(1)
1 , . . . , x

σ1(�π1N�)
1 , x

σ2(1)
2 , . . . , x

σ2(�π2N�)
2 , . . . . . . , xσn(1)

n , . . . , xσn(�πnN�)
n )

= μN(x1
1 , . . . , x

�π1N�
1 , x1

2 , . . . , x
�π2N�
2 , . . . . . . , x1

n, . . . , x�πnN�
n ).

By the indistinguishability, the distribution of a typical particle is given by the marginal dis-
tribution. For this, we first introduce the following notation for projections.

Definition 2 (Projections). Let p = (p1, . . . , pn) and N be such that pi ≤ �πiN� for i =
1, . . . , n. We define the projection

PN;(p) :P(�N
M) �→ P(�

⊗(p1+···+pn)
M )

by

(PN;(p)μN)(x) :=
∑

x
p1+1
1 ∈�M

· · ·
∑

x
�π1N�
1 ∈�M

∑
x

p2+1
2 ∈�M

· · ·
∑

x
�π2N�
2 ∈�M

· · · · · ·
∑

x
pn+1
n ∈�M

· · ·
∑

x
�πnN�
n ∈�M

μN(x1
1 , . . . , x

�π1N�
1 , x1

2 , . . . , x
�π2N�
2 , . . . . . . , x1

n, . . . , x�πnN�
n )

for

x := (x1
1 , . . . , x

p1
1 , x1

2 , . . . , x
p2
2 , . . . . . . , x1

n, . . . , x
pn
n ).

For μN ∈ P(�N
M), we denote the marginal by

μN;(p) = PN;(p)μN ∈ P(�
⊗(p1+···+pn)
M ).

We then expect to recover the master equation from the first marginals

ui := μN;(ei ),

where ei = (0, . . . , 0, 1, 0, . . . , 0) denotes the unit vector with n components, where the 1 is at 
the i-th component.

The quadratic terms are expected to originate from a binary interaction in the particle model. 
The diffusion is the result of a random walk and the nonlinearity given in the SKT model (1) is 
expected to come out from jumps of particles interacting at the same position.

The entropy structure is expected to be linked to the reversibility of the Markov chain. We 
therefore introduce a binary interaction which happens in a reversible way. This can be realised 
by imposing the same jump for the interacting particles.

This leads us to consider the following class of particle models, describing the evolution of 
the microscopic configuration.
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Definition 3 (Reversible particle model). Let Di and Dij be nonnegative constants such that 
Dij = Dji for i, j = 1, . . . , n. For a fixed N , define the time-continuous Markov chain on �N

M

by the transitions

x → x + ea

i
+ eb

j

x → x − ea

i
− eb

j

⎫⎬⎭ with rate δ(i,a)�=(j,b)δxa
i =xb

j

Dij

N

x → x + ea

i

x → x − ea

i

}
with rate Di

for i, j = 1, . . . , n and a = 1, . . . , �πiN�, b = 1, . . . , �πjN�, where ea

i
is the vector with com-

ponents of value zero at all places, except for the ath particle of species i, where the value is 
h = 1/M . The Markov chain is defined to have no other transitions.

Remark 1. The transition rates are well-defined if and only if Dij = Dji , which will lead to 
condition (3).

From the construction, we directly see the reversibility.

Lemma 2. The Markov chain given in Definition 3 is reversible and the stationary distribu-
tion is the homogeneous distribution, where each x ∈ �N

M has the same probability |�N
M |−1 =

M−(�π1N�+...+�πnN�).

Proof. This can be obtained by a direct computation. �
We now suppose that the microscopic configuration evolves according to the Markov chain. 

Then the distribution μN solves the following linear ODE:

d

dt
μN(x) =

n∑
i=1

�πiN�∑
a=1

Di

[
μN(x + ea

i ) + μN(x − ea
i ) − 2μN(x)

]

+ 1

2

n∑
i=1

�πiN�∑
a=1

n∑
j=1

�πj N�∑
b=1

δ(i,a)�=(j,b)δxa
i =xb

j

Dij

N
(5)

×
[
μN(x + ea

i + eb
j ) + μN(x − ea

i − eb
j ) − 2μN(x)

]
.

Here we used that xa
i = xb

j holds after the pairwise interaction if and only if it holds before, so 
that we can factor it out (that is, δxa

i =xb
j

= δ(x+ea
i )ai =(x+eb

j )bj
= δ(x−ea

i )ai =(x−eb
j )bj

).

We further suppose that the particles are indistinguishable, which is propagated in time.

Lemma 3 (Propagation of indistinguishability). Suppose that μN is the distribution for the 
Markov chain given in Definition 3. If μN ∈ Ps(�

N
M) initially holds, then it also holds at all 

later times.
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Proof. It follows directly from the definition of the transition rates, which respect the indistin-
guishability. �

We now write explicitly the formula emphasizing the entropy structure of our reversible 
Markov process, we recall that due to [4], the time-reversible many-particle continuous time 
Markov chain is a gradient flow of the relative entropy with respect to its stationary distribution.

Lemma 4. We assume that Di ≥ 0, and Dij = Dji ≥ 0 for all 1 ≤ i, j ≤ n. We also assume that 
μN is initially strictly positive. Then, the entropy functional defined by

H̃(μN) :=
∑
x

μN(x) log

(
μN(x)

M(�π1N�+···+�πnN�)

)
(6)

is decreasing with respect to time, i.e.

d

dt
H̃(μN) ≤ 0 for all t > 0

along the flow of (5).

Proof. Note first that the strict positivity of μN is maintained in the evolution of the process, so 
that the logarithm of μN is always well defined.

The proof works in a totally analogous way as the proof of (14), where the entropy decay is 
shown on the macroscopic level. For completeness, we sketch the proof also here, by using the 
following notation for any function f : �N

M → (0, ∞):

�ea
i
(f (x)) := f (x + ea

i
) + f (x − ea

i
) − 2f (x),

�(ea
i
+eb

j
)(f (x)) := f (x + ea

i
+ eb

j
) + f (x − ea

i
− eb

j
) − 2f (x),

∇+
(ea

i
)(f (x)) := f (x + ea

i
) − f (x),

∇+
(ea

i
+eb

j
)
(f (x)) := f (x + ea

i
+ eb

j
) − f (x).

Here ea

i
is the vector with components of value zero at all places, except for the ath particle of 

species i, where the value is h = 1/M . This coincides with the notation of a discrete Laplacian 
and discrete gradient up to positive scaling constants. We will introduce them more rigorously 
on the level of the master equation in Section 3. Thanks to the periodicity of the domain and to a 
discrete integration by parts (see detailed formulas at the beginning of Section 3), it holds that

d

dt
H̃(μN) =

∑
x

(
logμN(x) + 1

) d

dt

(
μN(x)

)

=
∑
x

n∑
i=1

�πiN�∑
a=1

Di

(
logμN(x) + 1

)
�ea

i

(
μN(x)

)
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+ 1

2

∑
x

n∑
i,j=1

�πiN�∑
a=1

�πj N�∑
b=1

δ(i,a)�=(j,b)δxa
i =xb

j

Dij

N

(
logμN(x) + 1

)
�(ea

i
+eb

j
)

(
μN(x)

)

= −
∑
x

n∑
i=1

�πiN�∑
a=1

Di∇+
(ea

i
)

(
logμN(x)

)
· ∇+

(ea
i
)

(
μN(x)

)

− 1

2

∑
x

n∑
i,j=1

�πiN�∑
a=1

�πj N�∑
b=1

δ(i,a)�=(j,b)δxa
i =xb

j

Dij

N
∇+

(ea
i
+eb

j
)

(
logμN(x)

)
× ∇+

(ea
i
+eb

j
)

(
μN(x)

)
≤ 0,

thanks to the monotonicity of x �→ logx. �
The evolution of the marginals is given by the BBGKY hierarchy.

Lemma 5 (BBGKY hierarchy). Suppose that μN ∈ Ps(�
N
M) is the density evolving according 

to (5). Then the marginals evolve as

d

dt
μN;(p)(x) = I + II + III,

where

I = Di

n∑
i=1

pi∑
a=1

[μN;(p)(x + ea
i ) + μN;(p)(x − ea

i ) − 2μN;(p)(x)],

I I = 1

2

n∑
i=1

pi∑
a=1

n∑
j=1

pj∑
b=1

δ(i,a)�=(j,b)δxa
i =xb

j

Dij

N

× [μN;(p)(x + ea
i + eb

j ) + μN;(p)(x − ea
i − eb

j ) − 2μN;(p)(x)],

with ea
i defined as the vector of size p1 + · · · + pn with all coordinates with value 0, except the 

coordinate of index p1 + · · · + pi−1 + a, which value is 1/M = h. Finally,

III =
n∑

i=1

pi∑
a=1

n∑
j=1

∑
x

pj +1

j ∈�M

δ
xa
i =x

pj +1

j

Dij

�πjN� − pj

N

×
[
μN;(p+ej )((x#x

pj +1
j ) + ẽa

i + ẽ
pj +1
j ) + μN;(p+ej )((x#x

pj +1
j ) − ẽa

i − ẽ
pj +1
j )

− 2μN;(p+ej )((x#x
pj +1
j ))

]
with
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(x#x
pj +1
j ) = (x1

1 , . . . , x
p1
1 , . . . . . . , x1

j , . . . , x
pj

j , x
pj +1
j , x1

j+1, . . . , x
pj+1
j+1 , . . . . . . , x1

n, . . . , x
pn
n ),

i.e. x with x
pj +1
j added between x

pj

j and x1
j+1, and where ẽa

i is defined as the vector of size 
p1 + · · · + (pj + 1) + · · · + pn with all coordinates with value 0, except the coordinate of index 
p1 + · · · + pj + 1, which value is 1/M = h.

The term I is the standard linear diffusion. The term II is the quadratic interaction between 
the considered particles, which should be negligible as N → ∞. The term III is the interaction 
between the considered particles and the averaged particles, which leads to the quadratic term. 
The interaction between the averaged particles does not appear in the projection.

Proof. Take the projection PN;(p). The terms I and II follow directly. The third term appears 
as

III =
n∑

i=1

pi∑
a=1

n∑
j=1

�πj N�∑
b=pj +1

δxa
i =xb

j

Dij

N
PN;(p)[μN(x + ea

i
+ eb

j
) + μN(x − ea

i
− eb

j
) − 2μN(x)],

where we ordered the pair (i, a) and (j, b) so that the factor 1/2 is not appearing there. Thanks 
to the indistinguishability, this takes the claimed form. �

Thus, as usually in the BBGKY hierarchy (tracing back to [14]), in order to compute the 
evolution of the one-particle marginals ui , we need the knowledge of the two-particle marginals, 
whose evolution in turn requires the three-particle marginals.

In order to close an equation on ui , we thus need an additional assumption. This assump-
tion has been identified as chaos by Kac [15], in a mathematical setting following the famous 
Stoßzahlansatz by Boltzmann (first suggested by J. Clerk Maxwell in [16]). It states that in the 
limit N → ∞, the different particles are becoming independent. In terms of the measure μN , 
it means that

μN(x1
1 , . . . , x

�π1N�
1 , x1

2 , . . . , x
�π2N�
2 , . . . . . . , x1

n, . . . , x�πnN�
n )

≈ u1(x
1
1) · · ·u1(x

�π1N�
1 )u2(x

1
2) · · ·u2(x

�π2N�
2 ) · · · · · ·un(x

1
n) · · ·un(x

�πnN�
n ),

(7)

as N → ∞. The formal idea is that the interaction between two particles is scaled as N−1 so that 
the correlation between two particles should also be scaled as N−1. Therefore, as N → ∞, the 
particles become independent in the limit. In a way for a rigorous mathematical treatment, Kac 
suggested to initially assume the factorisation and then prove that this is preserved in time with 
an error going to zero as N → ∞ (propagation of chaos).

Proposition 6. Formally, as N → ∞ we have under the Stoßzahlansatz that the marginals ui

evolve as

d

dt
ui(x) = Di

[
ui(x + h) + ui(x − h) − 2ui(x)

]
(8)

+
n∑

j=1

Dijπj

[
uj (x + h)ui(x + h) + uj (x − h)ui(x − h) − 2uj (x)ui(x)

]
.
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Proof. This follows from Lemma 5, where in the term III , we see that �πjN�−pj

N
→ πj , and we 

reduce the two-marginal density as a product by (7). �
This gives the desired quadratic master equation with the final rate Aij := Dijπj . This is 

equivalent to the detailed balance equation (3), which follows from the symmetry Dij = Dji in 
the following way:

πiAij = πiDijπj = πjDjiπi = πjAji for all 1 ≤ i, j ≤ n.

Thanks to the chaos assumption, we can relate the relative entropy of μN to the relative 
entropy of the ui using the following proposition.

Proposition 7. Assume

μN(x1
1 , . . . , x

�π1N�
1 , x1

2 , . . . , x
�π2N�
2 , . . . . . . , x1

n, . . . , x�πnN�
n )

= u1(x
1
1) · · ·u1(x

�π1N�
1 )u2(x

1
2) · · ·u2(x

�π2N�
2 ) · · · · · ·un(x

1
n) · · ·un(x

�πnN�
n ),

then

1

N
H̃(μN) =

∑
x

μN(x) log

(
μN(x)

M(�π1N�+···+�πnN�)

)
= 1

N

n∑
i=1

M−1∑
�=0

�πiN�ui(x�) log

(
ui(x�)

M

)

Proof. This follows from expanding the logarithm as product and using that the ui are probabil-
ity distributions. �

When N → ∞, this last quantity converges towards 
∑n

i=1 πi

∑M−1
�=0 ui(x�) log

(
ui(x�)

M

)
. Be-

cause of Lemma 4 and Proposition 6, we expect that this quantity decreases along the flow of 
eq. (8). We shall indeed prove this in the next section, thus establishing the link between the en-
tropy structure for eq. (8) (and its limit when the discretisation step h tends to 0) and the classical 
relative entropy of Markov chains.

3. Rigorous derivation to the cross-diffusion system

Starting from the Markov chain defined in Definition 3, we showed in the last section how 
performing the mean-field limit on the formal level leads to the spatial discretisation (8) of the 
SKT system (1). In fact, we expect this particular discretisation to preserve the entropy structure 
of the Markov chain. In this section we shall check this property and use it to pass rigorously to 
the limit when the discretisation step h tends to 0, thus recovering the existence of weak solutions 
for the SKT model.

For this, we recall the discretisation �M = {xk = kh : k = 0, . . . , M − 1} with h = M−1

from (4). Moreover, we introduce the discrete derivatives and discrete Laplacian by

(∇+
h f )(x) := f (x + h) − f (x)

h
, (∇−

h f )(x) := f (x) − f (x − h)

h
,

(�hf )(x) := [∇−
h (∇+

h f )](x) = [∇+
h (∇−

h f )](x) = f (x + h) + f (x − h) − 2f (x)

h2 .
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We now rewrite (8) together with its initial boundary conditions (and Aij := πj Dij ), after a 
suitable rescaling in time (such that ∂t is replaced by h2 ∂t ). This yields⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂tui(t, xk) = Di [�hui(t, ·)](xk) +
⎡⎣�h

⎛⎝ui(t, ·)
n∑

j=1

Aijuj (t, ·)
⎞⎠⎤⎦ (xk), k = 0, . . . ,M−1,

ui(0, xk) = u0
i (xk) ≥ 0, k = 0, . . . ,M−1, i = 1, . . . , n,

ui(t, x0) = ui(t, xM), ui(t, x−1) = ui(t, xM−1), ∀t, i = 1, . . . , n.

(9)

Given the values (w(xk))k=0,...,M−1 over �M , let w̃ : T �→ R be the linear interpolant (P1 dis-
cretisation), which can be defined by

w̃(x) :=
M−1∑
k=0

w(xk)T (x − xk) + w(x0) T (x − xM), (10)

where

T (x) = (1 − |x|/h) I[ |x|≤h ]. (11)

With this we can state our main theorem.

Theorem 8. Let Di ≥ 0 and Aij ≥ 0 be coefficients satisfying

(i) Aii > 0 (strict positivity of self-diffusion),
(ii) πiAij = πjAji for some constants πi > 0 (detailed balance equation).

We also assume continuous positive initial data u0
i := u0

i (x) > 0 on T for all 1 ≤ i ≤ n.
Then for all M ∈ N, there exists a unique global solution ui := ui(t, xk) > 0 of class C∞ to 

the discrete system (9) with h := 1/M .
Denoting [ũi]M the interpolant obtained from ui(t, xk) by formula (10), then there exists a 

subsequence such that the following holds: [ũi]M →M→∞ ui in L4−ε([0, T ] ×T) for all T > 0
and ε > 0, where ui ∈ L4([0, T ] ×T) ∩ L2([0, T ], H 1(T)) is a weak solution to the SKT system 
∂tui = �(Di ui + ∑n

j=1 Aijui uj ) (with initial data u0
i and periodic boundary conditions), in 

the following sense: For all ϕ ∈ C2
c ([0, ∞) ×T) and for all i = 1, . . . , n,

−
∫
T

ui(0, x)ϕ(0, x)dx −
∞∫

0

∫
T

ui(t, x)∂tϕ(t, x)dx dt

=
∞∫

0

∫
T

[
Di ui(t, x) +

n∑
j=1

Aij ui(t, x)uj (t, x)

]
�ϕ(t, x)dx dt.

The existence of weak solutions to the SKT model has been known for a long time in the case 
of two equations, and it has been studied more recently in the case of more than two species, 
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under the detailed balance condition (cf. [17,2]). We do not go beyond the existing theory of 
existence in this paper. We, however, present an approximation procedure which is extremely 
simple (it consists only in discretizing w.r.t. the space variable) compared to most previous pro-
cedures (cf. for example [18,19]).

Though this approximation procedure is presented here only in the specific case of the 
quadratic SKT model without reaction terms under the assumption of detailed balance in di-
mension 1 and in the presence of self-diffusion, our feeling is that it can be easily extended to 
more general cases. First, one can introduce (not too quickly increasing) reaction terms. Second, 
one can go to higher space dimensions d ≥ 1 keeping periodic boundary conditions. In a third 
step, by introducing a reasonable grid, one can expect that the same procedure works for any 
reasonably smooth domain with Neumann boundary conditions. Moreover, one can also think 
of non quadratic cases, provided that a good Lyapunov functional is known, or of the quadratic 
case without self-diffusion when the standard diffusion term or the reaction terms are sufficient 
to guarantee the equintegrability. It is less clear if duality arguments (cf. for example [20]) are 
compatible with this approximation (as they are when time discretisation is performed, cf. [21]): 
this issue will be investigated in future works.

The possibility of extending the formal results of the first part to more general systems (thus 
giving a microscopic background for an entropy structure which is known to exist at the macro-
scopic level) will also be studied further, especially in the direction of non quadratic systems, 
and systems presenting exclusion processes, see for instance [22–24].

We now begin the

Proof of Theorem 8. We first observe that there exists a unique global solution t ∈ R+ �→
(u1(t, xk), . . . , un(t, xk)) with ui(t, xk) ≥ 0 to the ODE system (9). We briefly sketch the proof 
of this result, which uses standard theorems for ODEs.

We denote by T1 > 0 the maximal time of existence for the equation (obtained thanks to 
Cauchy–Lipschitz theorem), and by T2 ∈]0, T1[ the maximal time for which ui(t, xk) > 0 for all 
i, k and t ∈ [0, T2[. Note that T2 > 0 because all initial data are assumed to be strictly positive.

On the interval [0, T2[, we use the conservation of the total number of individuals (of each 
species)

d

dt

(
M−1∑
k=0

ui(t, xk)

)
= 0,

for i = 1, . . . , n, and get that

∀t ∈]0, T2[, i = 1, .., n, k = 0, ..,M − 1, 0 ≤ ui(t, xk) ≤ C, (12)

where C := supi=1,..,n

[∑M−1
k=0 ui(0, xk)

]
.

Then, we observe that on the interval [0, T2[,

h2 ∂tui(t, xk) = Di [ui(t, xk + h) + ui(t, xk − h) − 2ui(t, xk)]

+
n∑

Aij

[
(uiuj )(t, xk + h) + (uiuj )(t, xk − h) − 2(uiuj )(t, xk)

]

j=1
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≥ −2Di ui(t, xk) − 2
n∑

j=1

Aij (uiuj )(t, xk)

≥ −2 (Di + C

n∑
j=1

Aij )ui(t, xk),

and consequently

ui(t, xk) ≥ ui(0, xk) exp

(
− 2

h2

⎡⎣Di + C

n∑
j=1

Aij

⎤⎦ T2

)
> 0 for all t ∈ [0, T2].

Then T2 = T1, and finally thanks to estimate eq. (12), T1 = ∞.

3.1. Discrete system

We start by studying the discrete system and establishing the main a priori estimates, which 
are uniform with respect to the spatial discretisation M . Those estimates are a direct consequence 
of the entropy structure of our models.

Lemma 9. Under the same assumptions on the coefficients and initial data as in Theorem 8, the 
unique solution to the system (9) satisfies the following a priori estimates, for some constants 
CT > 0 depending only on T , the initial data, and the coefficients πi , Aij and Di :

n∑
i=1

T∫
0

h

M−1∑
k=0

|(∇+
h ui)(t, xk)|2dt ≤ CT , (13)

and

d

dt
Hh(u(t, ·)) ≤ 0, sup

t∈[0,T ]
Hh(u(t, ·)) ≤ CT , (14)

where

Hh(u) :=
n∑

i=1

h

M−1∑
k=0

πi

[
ui(xk) log(ui(xk)) − ui(xk) + 1

]
. (15)

Remark 10. The normalised entropy described at the end of Section 2 differs from Hh in (15)
only by terms which are constant with respect to time t (due to mass conservation), thus the 
entropy dissipation of those terms is 0.

For the proof, we rely on the following elementary properties for the discrete derivatives:
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(i) Discrete integration by parts: For all 1-periodic functions p, q : R →R,

M−1∑
k=0

(∇+
h p)(xk) q(xk) = −

M−1∑
k=0

p(xk) (∇−
h q)(xk); (16)

(ii) Discrete product rule: For all functions p, q :R → R,

(∇+
h (pq))(x) = p(x + h) (∇+

h q)(x) + (∇+
h p)(x) q(x). (17)

Proof. By using the abbreviation ãij := πiAij (and therefore assuming that ãij = ãj i for all 
i, j ∈ {1, . . . , n}), we can compute

d

dt
Hh(u) =

n∑
i=1

M−1∑
k=0

hπi ∂tui(xk) logui(xk)

=
n∑

i=1

M−1∑
k=0

hπi

⎛⎝�h

⎡⎣Diui + ui

n∑
j=1

Ai,juj

⎤⎦⎞⎠ (xk) logui(xk)

= h

n∑
i=1

M−1∑
k=0

Diπi logui(xk) (�hui)(xk) + h

n∑
i,j=1

M−1∑
k=0

ãij logui(xk) (�h(ui uj ))(xk)

= −h

n∑
i=1

M−1∑
k=0

Diπi (∇+
h (logui))(xk) (∇+

h (ui))(xk)

− h

n∑
i,j=1

M−1∑
k=0

ãij (∇+
h (logui))(xk) (∇+

h (ui uj ))(xk)

= −h

n∑
i=1

M−1∑
k=0

Diπi (∇+
h (logui))(xk) (∇+

h (ui))(xk)

− h

2

n∑
i,j=1

M−1∑
k=0

ãij (∇+
h (log(ui uj )))(xk) (∇+

h (ui uj ))(xk)

≤ −4h

n∑
i=1

M−1∑
k=0

Diπi |∇+
h (

√
ui)(xk)|2 − 2h

n∑
i,j=1

M−1∑
k=0

ãij |∇+
h (

√
ui uj ))(xk)|2 ≤ 0.

We used above the elementary inequality (x − y)(logx − logy) ≥ 4(
√

x − √
y)2 for all x > 0, 

y > 0.
We end up the proof of estimate (14) by noticing that all terms above are nonpositive and by 

integrating between 0 and T . Estimate (13) is obtained by using only the self diffusion terms 
(that is, the ones corresponding to ãij , for i = j ) and also by integrating between 0 and T .
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Next, we introduce for 1 ≤ p < ∞ the discrete norm for (w(xk))k=0,...,M−1 by defining

‖w‖p
h,p := h

M−1∑
k=0

|w(xk)|p. (18)

With the help of the following lemma, we can switch between the discrete norm and the norm 
of the continuous linear interpolant w̃ of w defined in (10):

Lemma 11. For 1 ≤ p < ∞ and w(xk) ≥ 0, k = 0, .., M − 1, it holds that

‖w̃‖p

Lp(T)
≤ ‖w‖p

h,p ≤ p + 1

2
‖w̃‖p

Lp(T)
, (19)

‖∇w̃‖p

Lp(T)
= ‖∇+

h w‖p
h,p, (20)

where ‖w‖h,p is the discrete norm defined in (18), and w̃ is the linear interpolant defined in (10).

Remark 12. The factor 2/(p + 1) is necessary, as can be seen from the case when w(xk) = 1 for 
k = 1 and w(xk) = 0 otherwise.

Proof. Note that the linear interpolant w̃ can also be rewritten as

w̃(x) =
M−1∑
k=0

(
αk(x)w(xk) + (1 − αk(x))w(xk+1)

)
I[xk,xk+1)(x), (21)

where w(xM) := w(x0) and

αk(x) = xk+1 − x

h
.

For x ∈ [xk, xk+1) with k = 0, . . . , M − 1, we know thanks to (21) that

w̃(x) = αk(x)w(xk) + (1 − αk(x))w(xk+1).

Since x �→ xp is convex, we see that

|w̃(x)|p ≤ αk(x) |w(xk)|p + (1 − αk(x)) |w(xk+1)|p,

so that integrating between xk and xk+1, we get

xk+1∫
xk

|w̃(x)|p dx ≤ h

2
|w(xk)|p + h

2
|w(xk+1)|p,

which shows the first part of (19).
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In the other direction, we find that

xk+1∫
xk

|w̃(x)|p dx = h

1∫
β=0

|βw(xk) + (1 − β)w(xk+1)|p dβ

= h

p + 1

[
w(xk+1)

]p+1 − [w(xk)]p+1

w(xk+1) − w(xk)

≥ h

p + 1

[[
w(xk+1)

]p + [w(xk)]
p

]
,

where we used the elementary inequality

Ap+1 − Bp+1

A − B
≥ Ap + Bp for all A,B ≥ 0. (22)

This elementary inequality is easily proved (by considering A/B). This finishes the proof of (19).
For (20), we see that for k = 0, . . . , M − 1,

∇w̃(x) = (∇+
h w

)
(xk) for x ∈ (xk, xk+1).

This implies

‖∇w̃‖p

Lp(T)
=
∫
T

|∇w̃(x)|p dx =
M−1∑
k=0

xk+1∫
xk

|∇w̃(y)|p dy

=
M−1∑
k=0

h
∣∣(∇+

h w
)
(xk)

∣∣p = ‖∇+
h w‖p

h,p. �

3.2. Uniform a priori estimates for the linear interpolant

From now on, when we interpolate functions which depend on t , we systematically write 
w̃(t, x) instead of w̃(t, ·)(x). We also use the notation CT for any constant depending on the 
time T , on the initial data and the parameters π , Ai,j and Di of the problem, but not on the 
discretisation parameter h = 1/M .

Combining Lemma 9 and Lemma 11, we obtain for ũi with i = 1, . . . , n that

sup
t∈[0,T ]

∫
T

ũi (t, x)dx ≤ CT , (23)

T∫
0

∫
T

|∇ũi (t, x)|2 dx dt ≤ CT . (24)

Using the Gagliardo–Nirenberg inequality, this implies for p ∈ [1, 4] that
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T∫
0

∫
T

|ũi (t, x)|p dx dt ≤ CT . (25)

Note that in the estimate above, when the dimension d = 1 is replaced by a more general dimen-
sion d , the maximal value 4 of p is replaced by 2 + 2/d .

Indeed, the Gagliardo–Nirenberg interpolation allows to estimate ‖ũi‖Lp(T) by
‖∇ũi‖θ

L2(T)
‖ũi‖1−θ

L1(T)
. Choosing θp = 2, means that θ = (2d(p − 1))/((d + 2)p) ∈ [0, 1] so 

that p = 2 + 2/d . With this choice, we find

‖ũi‖p

Lp([0,T ],Lp(T))
=

T∫
0

‖ũi‖p

Lp(T)
dt

≤ C

T∫
0

‖∇ũi‖θp

L2(T)
‖ũi‖(1−θ)p

L1(T)
dt

≤ C‖ũi‖(1−θ)p

L∞([0,T ],L1(T))

T∫
0

‖∇ũi‖θp

L2(T)
dt

≤ C‖ũi‖(1−θ)p

L∞([0,T ],L1(T))
‖∇ũi‖2

L2([0,T ]×T)
.

Using Lemma 11, we can relate the estimate back to the discrete system as

T∫
0

h

M−1∑
k=0

|ui(t, xk)|p dt ≤ CT , for all p ∈ [1,4]. (26)

We now show that for all φ ∈ W 1,∞(T),

T∫
0

∣∣∣∣∂t

∫
T

ũi (t, x)φ(x)dx

∣∣∣∣dt ≤ CT ‖φ‖W 1,∞(T). (27)

Indeed, performing a discrete integration by parts in xk (cf. (16)) and performing the transla-
tion x �→ x + h inside the integral over T, we get that

∂t

∫
T

ũi (t, x)φ(x)dx

=
M−1∑
k=0

[
�h

(
Di ui(t, ·) + ui(t, ·)

n∑
j=1

Aijuj (t, ·)
)]

(xk)

∫
T (x − xk)φ(x)dx
T
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= −
M−1∑
k=0

[
∇+

h

(
Di ui(t, ·) +

n∑
j=1

Aij ui(t, ·)uj (t, ·)
)]

(xk)

∫
T

[(∇+
h T )(x − ·)](xk)φ(x)dx

=
M−1∑
k=0

[
∇+

h

(
Di ui(t, ·) +

n∑
j=1

Aij ui(t, ·)uj (t, ·)
)]

(xk)

∫
T

T (x − xk) − T (x − xk+1)

h
φ(x)dx

= −
M−1∑
k=0

[
∇+

h

(
Di ui(t, ·) +

n∑
j=1

Aij ui(t, ·)uj (t, ·)
)]

(xk)

∫
T

T (x − xk) [∇+
h φ](x)dx.

By the discrete product rule (17), this can be estimated as

T∫
0

∣∣∣∣∂t

∫
T

ũi (t, x)φ(x)dx

∣∣∣∣dt

≤
T∫

0

M−1∑
k=0

∣∣∣∣[∇+
h

(
Di ui(t, ·) +

n∑
j=1

Aij ui(t, ·)uj (t, ·)
)]

(xk)

∣∣∣∣ ∫
T

T (x − xk) |[∇+
h φ](x)|dx dt

≤ ‖∇+
h φ‖∞ h

T∫
0

M−1∑
k=0

∣∣∣∣[∇+
h

(
Di ui(t, ·) +

n∑
j=1

Aij ui(t, ·)uj (t, ·)
)]

(xk)

∣∣∣∣dt

≤ ‖∇+
h φ‖∞

T∫
0

h

M−1∑
k=0

n∑
j=1

Aij |ui(t, xk + h)| |[∇+
h uj (t, ·)](xk)|dt

+ ‖∇+
h φ‖∞

T∫
0

h

M−1∑
k=0

n∑
j=1

Aij |uj (t, xk)| |[∇+
h ui(t, ·)](xk)|dt

+ ‖∇+
h φ‖∞

T∫
0

h

M−1∑
k=0

Di |[∇+
h ui(t, ·)](xk)|dt

≤ ‖∇+
h φ‖∞

n∑
j=1

Aij

( T∫
0

h

M−1∑
k=0

|ui(t, xk + h)|2 dt

)1/2 ( T∫
0

h

M−1∑
k=0

|[∇+
h uj (t, ·)](xk)|2 dt

)1/2

+ ‖∇+
h φ‖∞

n∑
j=1

Aij

( T∫
0

h

M−1∑
k=0

|uj (t, xk)|2 dt

)1/2 ( T∫
0

h

M−1∑
k=0

|[∇+
h ui(t, ·)](xk)|2 dt

)1/2

+ ‖∇+
h φ‖∞Di

( T∫
h(

M−1∑
k=0

1)dt

)1/2 ( T∫
h

M−1∑
k=0

|[∇+
h ui(t, ·)](xk)|2 dt

)1/2
0 0
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≤ CT [nmax
i,j

Aij + max
i

Di] ‖φ‖W 1,∞(T)

[
T 1/2 + max

j

( T∫
0

h

M−1∑
k=0

|uj (t, xk)|2 dt

)1/2 ]
≤ CT ,

where we used estimates (13) and (26).

3.3. Compactness

In order to stress the dependence w.r.t. the spatial discretisation, we denote by [ũi]M the 
interpolant associated to the discrete system on �M .

The classical Aubin–Lions lemma shows with the estimates (24), (25) and (27) that there 
exists a subsequence such that

[ũi]M →M→∞ ui strongly in L4−ε([0, T ] ×T)

for some ui ∈ L4([0, T ] ×T) ∩ L2([0, T ], H 1(T)).

3.4. Passing to the limit

We now show that the limit is a solution in the weak formulation stated in Theorem 8.
We first find that the interpolation [ũi]M of the discrete solution on �M satisfies for all test 

functions ϕ := ϕ(t, x) ∈ Cc([0, +∞) ×T) and i = 1, . . . , N that

−
∫
T

[ũi]M(0, x)ϕ(0, x)dx −
∞∫

0

∫
T

[ũi]M(t, x) ∂tϕ(t, x)dx dt

= Di

∞∫
0

∫
T

[ũi]M(t, x)�hϕ(t, x)dx dt +
n∑

j=1

Aij

∞∫
0

∫
T

[ũiuj ]M(t, x)�hϕ(t, x)dx dt,

(28)

where [ũiuj ]M is the interpolant (in the sense of (10)) of uiuj from the values on �M .
Indeed, differentiating the interpolant [ũ]M in time, we find from the ODE system (9) that

∂t [ũi]M(t, x) =
M−1∑
k=0

⎡⎣�h

⎛⎝Di ui(t, ·) +
n∑

j=1

Aijui(t, ·)uj (t, ·)
⎞⎠⎤⎦ (xk)T (x − xk). (29)

Multiplying with the compact test function ϕ and integrating shows that

−
∫
T

[ũi]M(0, x)ϕ(0, x) dx −
∞∫

0

∫
T

[ũi]M∂tϕ dx dt

=
∞∫ ∫ M−1∑

k=0

⎡⎣�h

⎛⎝Di ui(t, ·) +
n∑

j=1

Aijui(t, ·)uj (t, ·)
⎞⎠⎤⎦ (xk)T (x − xk)ϕ(t, x)dx dt
0 T
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=
∞∫

0

∫
T

M−1∑
k=0

[
Di ui(t, ·) +

n∑
j=1

Aijui(t, ·)uj (t, ·)
]
(xk)�h [T (x − ·)] (xk)ϕ(t, x)dx dt

=
∞∫

0

M−1∑
k=0

[
Di ui(t, ·) +

n∑
j=1

Aijui(t, ·)uj (t, ·)
]
(xk)

∫
T

T (x − xk)(�hϕ)(x)dx dt

= Di

∞∫
0

∫
T

[ũi]M(t, x)�hϕ(t, x)dx dt +
n∑

j=1

Aij

T∫
0

∫
T

[ũiuj ]M(t, x)�hϕ(t, x)dx dt,

so that (28) holds.

Next, we use the following result explaining how the linear interpolation behaves on products:

Lemma 13. Under the assumptions of Theorem 8, the following estimate holds:

T∫
0

∫
T

∣∣∣[ũiuj ]M(t, x) − [ũi]M(t, x)[ũj ]M(t, x)

∣∣∣ dx dt ≤ CT h.

Proof. For x ∈ [xk, xk+1) the representation formula (21) shows for i = 1, . . . , n that

[ũ]Mi (t, x) = αk(x)ui(t, xk) + (1 − αk(x))ui(t, xk+1),

[ũiuj ]M(t, x) = αk(x)
[(

uiuj

)
(t, xk)

]+ (1 − αk(x))
[(

uiuj

)
(t, xk+1)

]
,

where we recall that αk(x) = (xk+1 − x)/h. Then, for x ∈ [xk, xk+1):∣∣∣∣[ũiuj ]M(t, x) − [ũi]M(t, x)[ũj ]M(t, x)

∣∣∣∣
=
∣∣∣∣αk(x)

[(
uiuj

)
(t, xk)

]+ (1 − αk(x))
[(

uiuj

)
(t, xk+1)

]
−
([

αk(x)ui(t, xk) + (1 − αk(x))ui(t, xk+1)
] [

αk(x)uj (t, xk) + (1 − αk(x))uj (t, xk+1)
])∣∣∣∣

≤ αk(x)(1 − αk(x))

(
ui(t, xk) + ui(t, xk+1)

)∣∣∣∣uj (t, xk+1) − uj (t, xk)

∣∣∣∣.
Consequently, we get that

T∫
0

∫
T

∣∣∣[ũiuj ]M − [ũi]M [ũj ]M
∣∣∣ dxdt

≤
T∫ ⎛⎝M−1∑

k=0

xk+1∫
αk(x)(1 − αk(x))dx

(|ui(t, xk)| + |ui(t, xk+1)|
)∣∣uj (t, xk+1) − uj (t, xk)

∣∣⎞⎠ dt
0 xk
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T∫
0

M−1∑
k=0

h
(|ui(t, xk)| + |ui(t, xk+1)|

) ∣∣uj (t, xk+1) − uj (t, xk)
∣∣dt

≤ 1

3

T∫
0

(
M−1∑
k=0

h |ui(t, xk)|2
)1/2 (M−1∑

k=0

h
∣∣uj (t, xk+1) − uj (t, xk)

∣∣2)1/2

dt

= 1

3
h

⎛⎝ T∫
0

M−1∑
k=0

h |ui(t, xk)|2 dt

⎞⎠1/2 ⎛⎝ T∫
0

M−1∑
k=0

h
∣∣(∇+

h uj (t, ·))(xk)
∣∣2 dt

⎞⎠1/2

.

This concludes the proof with the estimates (13) and (26). �
Thanks to the lemma above, the weak formulation (28) of the discretised system implies that 

for all ϕ := ϕ(t, x) ∈ Cc([0, T ) ×T) and i ∈ 1, . . . , n,

−
∫
T

[ũi]M(0, ·)ϕ(0, ·)dx

−
∞∫

0

∫
T

⎛⎝[ũi]M ∂tϕ +
[
Di [ũi]M +

n∑
j=1

Aij [ũi]M [ũj ]M
]

�hϕ

⎞⎠ dx dt =O(h).

(30)

We end up the proof of Theorem 8 by observing that the limit satisfies

−
∫
T

ui(0, ·)ϕ(0, ·)dx −
∞∫

0

∫
T

⎛⎝ui∂tϕ + [Di ui +
n∑

j=1

Aijuiuj ]�ϕ

⎞⎠ dx dt = 0.

Indeed,∣∣∣∣∣∣−
∫
T

ui(0, ·)ϕ(0, ·) −
∞∫

0

∫
T

⎛⎝ui∂tϕ + [Di ui +
n∑

j=1

Aijuiuj ]�ϕ

⎞⎠ dx dt

∣∣∣∣∣∣
≤
∫
T

∣∣∣ui(0, ·) − [ũi]M(0, ·)
∣∣∣ |ϕ(0, ·)|dx +

∞∫
0

∫
T

∣∣∣ui − [ũi]M
∣∣∣ |∂tϕ|dx dt

+
n∑

j=1

Aij

∞∫
0

∫
T

∣∣∣[ũi]M [ũj ]M − uiuj

∣∣∣ |�hϕ|dx dt + Di

∞∫
0

∫
T

∣∣∣[ũi]M − ui

∣∣∣ |�hϕ|dx dt

+
∞∫

0

∫
T

|Di ui +
n∑

j=1

Aij uiuj | |�hϕ − �ϕ| dx dt +O(h).



JID:YJDEQ AID:9551 /FLA [m1+; v1.288; Prn:24/09/2018; 15:05] P.21 (1-22)

E.S. Daus et al. / J. Differential Equations ••• (••••) •••–••• 21
The first integral tends to 0 because ui(0, ·) is continuous on T. The second and fourth integrals 
converge to 0 because [ũi]M → ui strongly in L1, the third integral converges to 0 because 
[ũi]M → ui strongly in L2, and the last integral converges to 0 since ϕ is smooth. �

This concludes the proof of Theorem 8.
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