期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS | 卷:262 |
Locally bounded global solutions to a chemotaxis consumption model with singular sensitivity and nonlinear diffusion | |
Article | |
Lankeit, Johannes1  | |
[1] Univ Paderborn, Inst Math, Warburger Str 100, D-33098 Paderborn, Germany | |
关键词: Keller-Segel; Chemotaxis; Nonlinear diffusion; Global existence; Boundedness; | |
DOI : 10.1016/j.jde.2016.12.007 | |
来源: Elsevier | |
【 摘 要 】
We show the existence of locally bounded global solutions to the chemotaxis system {u(t) = del.((u)del u) - del.(u/v del v) in Omega x(0, infinity) v(t) = Delta v - uv in Omega x(0, infinity) partial derivative v(u) = partial derivative(v)v = 0 in Omega x(0, infinity) u(., 0) = u(0,) v(., 0) = v(0) in Omega in smooth bounded domains Omega subset of R-N, N >= 2, for D(u) >= delta Um-1 with some delta > 0, provided that m > 1+ N/4. (C) 2016 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jde_2016_12_007.pdf | 1493KB | download |