期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:262
Global weak solutions in a three-dimensional Keller-Segel-Navier-Stokes system involving a tensor-valued sensitivity with saturation
Article
Liu, Ji1  Wang, Yifu1,2 
[1] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Beijing Key Lab MCAACI, Beijing 100081, Peoples R China
关键词: Keller-Segel;    Navier-Stokes;    Tensor-valued;    Global existence;   
DOI  :  10.1016/j.jde.2017.01.024
来源: Elsevier
PDF
【 摘 要 】

This paper is concerned with the following Keller-Segel-Navier-Stokes system { n(t) + u . del n = Delta n - del . (nS(x, n, c)del c), x epsilon Omega, t > 0, c(t) + u . del c = Delta c - c + n, x epsilon Omega, t > 0, u(t) + K(u . del)u = Delta u + del P + n del phi, x epsilon Omega, t > 0, del . u = 0, x epsilon Omega, t > 0 , where Omega subset of R-3 is a bounded domain with smooth boundary partial derivative Omega, K epsilon R and S denotes a given tensor-valued function fulfilling vertical bar S(x, n, c)vertical bar <= C-S / (1 + n)(alpha) with some C-S > 0 and alpha > 0. As the case K = 0 has been considered in [25], it is shown in the present paper that the corresponding initial-boundary problem with K not equal 0 admits at least one global weak solution if alpha >= 3/7. (C) 2017 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2017_01_024.pdf 1579KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次