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Abstract

This paper is concerned with the following Keller—Segel-Navier—Stokes system

ng+u-Vao=An—-V-mS(x,n,c)Ve), xe€, t>0,

c¢t+u-Ve=Ac—c+n, xe, t>0, )
ur+kw-Viu=Au+ VP +nVe, xe, t>0,
V-u=0, xeQ, t>0,

where § C R3 is a bounded domain with smooth boundary 02, « € R and § denotes a given tensor-valued
function fulfilling

|S(x,n,c)] < _Cs
(I+m)¥

with some Cg > 0 and o > 0. As the case k¥ = 0 has been considered in [25], it is shown in the present
paper that the corresponding initial-boundary problem with « 7 0 admits at least one global weak solution
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1. Introduction

Chemotaxis is a kind of partially oriented movement of living cells in response to chemical
gradients. In order to describe this biological phenomenon in mathematics, Keller and Segel [13]
proposed the following system

n,=An—-V-mnSn,c)Ve), xe€Q, t>0, (1)
¢, =Ac—c+n, xeQ, t>0, '

where n = n(x,t) and ¢ = c(x,t) stand for the density of cell population and the concentra-
tion of chemoattractant, respectively, and S = S(n, ¢) represents the chemotactic sensitivity.
The mathematical analysis of system (1.1) and the variants thereof mainly concentrates on the
boundedness and blow-up of the solutions (see [1,5,11,15,21,26]). From these works, it can be
observed that there are several different versions of chemotactic sensitivities, such as the signal-
dependent sensitivity S(n, ¢) = CTS or (1-555)2 with Cs > 0 and u > 0 [5,26], which reflects the
inhibition of cell movement in the location where the signal concentration is high [10,14], the
n-dependent sensitivity S(n, ¢) = n? with ¢ > 0 or n(n + 1)7 with ¢ € R [11,21], which shows
the volume-filling effect in the process of chemotaxis [17], as well as the tensor-valued sensitivity
S =(Sij)2x2 with §;; € C%(£2x [0, 00) x [0, 00)) for i, j € {1,2}[1.15], which describes the ro-
tational chemotactic migration happening close to the physical boundary of the domain [33,34].
In comparison with the systems with scalar-valued sensitivities, the systems with tensor-valued
sensitivity lose some energy structure, which results in considerable difficulties in the mathemat-
ical analysis.

If chemotaxis occurs in incompressible fluid, then the original chemotaxis system needs to
be coupled with another equation which characterizes the motion of the fluid, and the resulting
system can read as

n+u-Va=An—-V-mSn,c)Ve), xe€,t>0,

¢t+u-Ve=Ac—nf(c), xe, t>0, (12)
U +xku-VYu=Au-+VP +nVe, xeQ, t>0, '
V-u=0, xe€eQ, >0,

which was introduced in [23]. In system (1.2), u = u(x,t) and P = P(x,t) denote the veloc-
ity of incompressible fluid and the associated pressure, respectively, f, ¢ are given parameter
functions and « € R measures the strength of nonlinear fluid convection. As to the mathemat-
ical analysis of system (1.2), the global solvability of corresponding initial-boundary problem
is the most attractive issue during the past years and the related results have been established in
[27,30,31,35]. Among these results, one can find that if S and f satisfy some suitable structural
hypothesis the global solvability of system (1.2) can be derived on the basis of certain natural
quasi-Lyapunov functional involving the logarithmic entropy fQ nlnn, for both linear diffusion
[30,31] and porous-medium type nonlinear diffusion [35]. Besides that, for the two-dimensional
Navier—Stokes version of system (1.2), this energy-based method also plays an important role in
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the consideration of the large time behavior of the solutions [32]. However, if S is regarded as
a tensor-valued sensitivity as mentioned before, the energy-based reasoning seems to fail due to

"
its excessive dependence on the inflexible structural assumptions on S and f such as (é) <0

on (0, 00) [30,31,35]. Therefore, in order to relax the rigid structural restrictions on S and f,
for two-dimensional system (1.2) with tensor-valued S, the core of the arguments turns to the
analysis of the combinational functional [, n? + [ |Vc|* [12], and for the three-dimensional
chemotaxis—Stokes version of system (1.2) with tensor-valued S, an alternative approach of a pri-
ori estimation is developed in [27].

It is noted that the second equation in system (1.2) describes the situation where the chemical
signal is only consumed by cells, while if the chemical signal is secreted by cells, then system
(1.2) is transformed into

ng+u-Va=An—-V-mShn,c)Ve), xe€Q, t>0,
ci+u-Ve=Ac—rc+n, xe, t>0,
ur+kw-VIu=Au+VP +nVe, xe, t>0,
V.u=0, xe, t>0,

(1.3)

which is the coupled system of (1.1) with a (Navier—)Stokes equation. Due to the mathemat-
ical difficulties aroused by —c + n in the second equation of system (1.3), results on global
solvability of system (1.3) are much less as compared to that of system (1.2). In fact, under
the properly strong logistic dampening effect, the three-dimensional Stokes-version of system
(1.3) with S(n, ¢) = Cs > 0 possesses a globally bounded classical solution [20], while for (1.3)
with « = 1, the analogous conclusion is derived in the two-dimensional setting [19]; If S is
a signal-dependent function satisfying S(n, ¢) < (lfﬁ with u > 0 and k > 1, then a unique
globally bounded classical solution is constructed for two-dimensional system (1.3) and three-
dimensional Stokes-version of system (1.3), and a global weak solution is proved to exist for
three-dimensional Navier—Stokes version of system (1.3) [16]; If S = S(x,n, ¢) is a tensor-
valued sensitivity fulfilling

C
|S(x,n,c)|§ﬁ forsome o >0 and Cg >0, (1.4)
n

then two-dimensional Stokes-version of system (1.3) admits a unique global classical solution
which is bounded [24], and similar results are also valid for the three-dimensional Stokes-version
of system (1.3) with ¢ > % [25]. Whereas in the case when u = 0, there may exist solutions which
blow up in finite time either if the chemotactic sensitivity S is the constant unit matrix [29] or
if S decays at large values of n but too slowly [11,28,2-4]. From the above results, one can find
that the tensor-valued chemotactic sensitivity S fulfilling (1.4) can enforce the global solvability
of (1.3) appropriately, which makes it necessary to introduce saturation effects in the chemotactic
sensitivity in some cases. However for the three-dimensional Navier—Stokes-version of system
(1.3) with tensor-valued S, the results on global solvability are still unknown. Therefore, the pur-
pose of this paper is to prove that three-dimensional Navier—Stokes-version of system (1.3) with
tensor-valued S satisfying (1.4) is indeed globally solvable if « is suitably large, which, to the
best of our knowledge, is the first result on global solvability of three-dimensional Keller—Segel—
Navier—Stokes system (1.3) with tensor-valued sensitivity.
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Ahead of the presentation of the main result, we give a precise statement of the evolution
problem considered in the sequel. This problem is consisted of system (1.3) with boundary con-
ditions

on dc
—=—=0, u=0 on 0%, (L.5)
v dv
and the initial conditions
n(x,0) =no(x), cx,0)=colx), u(x,0=uop(x), xeg, (1.6)

where Q C R? is a bounded domain with smooth boundary 9 and the initial data comply with

nop € CO(Q) and ny > 0 as well as ng 0 in Q,
co € WH(Q) and ¢ > 0 as well as co # 0 in €, (1.7)
ug € D(AP) for some B € (3, 1)

with A standing for the Stokes operator in the solenoidal subspace L?;(Q) ={we L¥(Q)|V -
w = 0} of L?(£2). As to the parameter functions S and ¢ in (1.3), we assume that S = (Sij)3x3
with

SijeCQ(Qx[O,oo)x[O, o)) for i,jef{l,2,3} (1.8)
fulfills (1.4) and that
e WHX(Q). (1.9)
Now, we present the main result as follows.

Theorem 1.1. Let « # 0 and o > % and let (1.4)—(1.9) be valid. Then problem (1.3), (1.5) and
(1.6) possesses at least one global weak solution (n, c, u, P) in the sense of Definition 5.1 below.

The crucial step of our approach is to establish the e-independent estimates of

fn§“(~,t)+/c§(-,t) and f|u5(-,t)|2 forall >0 (1.10)
Q

Q Q

(see Section 3), where (ng, cg, Ug)ee(0,1) 1s the solution of the approximated system of (1.3) (see
(2.1) below). Then by a two-step bootstrap argument it is possible to gain the e-dependent bounds
for n, and Ve, in LP ((0, Tiax,e); LP(2)) and L9 ((0, Tmax,¢); L9(S2)) for arbitrarily large p > 1
and g > 1, respectively, which underlies the derivation of the global solvability of the approx-
imated system (see Section 4). In the final, based on the e-independent estimates of (1.10), we
can establish some e-independent bounds for spatio-temporal integrals of the approximated so-
lutions as well as several e-independent regularity features of their time derivatives, and then
follow a standard procedure to construct a global weak solution in the sense of Definition 5.1
(see Section 5).
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2. Preliminaries

Due to ¥ # 0 and the presence of tensor-valued S in system (1.3), we need to consider an
appropriately regularized problem of (1.3), (1.5) and (1.6) at first. According to the ideas in [15]
and [31], the corresponding regularized problem is introduced as follows:

Ret + e - Vg = Ang — V- (ng Fl(ng)Se (x, ng, ce)Vee), x€Q, t>0,
Cer e - Veg = Ace — ¢s + Fe(ny), xe, t>0,
Ugr +kYettg - Vg = Aug + VP, +n.Vo, xe, t>0, 51
Veup =0, XeQ, >0, 2.
az;lfz%:ov ug =0, x€eo, t>0,
ne(x,0) =no(x), ce(x,0)=co(x), ug(x,0)=up(x), xe€g,
where for ¢ € (0, 1),
Se(x,n,¢) 1= pe(X)S(x,n,¢), (x,n,¢) €Qx[0,00) x [0, 00) (2.2)

with {pg}ee(0,1) C C5°(R2) being a family of standard cut-off functions and fulfilling 0 < p. < 1
in 2 as well as p; — 1 as ¢ — 0 in €2, and moreover,

1
F.(s):=—In(1+¢s) forall s=>0,
€
and Y, denotes the standard Yosida approximation [ 18] defined as

Yev:=(1+egA) v forall velL2(Q).

From the definition of F,, we can also obtain that for any ¢ € (0, 1)

0<Fl(s)= T4 es <1 forall s>0, (2.3)
0<F,(s)<s forall s>0 2.4)

and
Fe(s)—s, Fl(s)—1 as e—0 forall s>0. (2.5)

The local solvability of (2.1) can be derived by a slight modification of the well-established
fixed point arguments in [30], so here we omit the proof.

Lemma 2.1. Let « # 0, and let (1.4)—(1.9) be satisfied. Then for each € € (0, 1), there exist a
maximal existence time Tmax ¢ € (0, +00) and a unique quadruple (ng, ce, ue, Pg) of functions
which solve (2.1) and comply with
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ne € COUQ X [0, Tinax£)) (N C*1 (€2 X (0, Tnax ),
ce € COUQ X [0, Timax.£)) N C21(Q x (0, Tmax.e)) Ny=3 COU0, Tnax.c); WH()),

e € COUQ X [0, Tnax,e): R M CH1 (2 x (0, Tnax ) R?), 20
Py € C1O(Q x (0, Trnax,e))
as well as
ng>0, ¢.>0 in Qx[0, Tmax.e)- (2.7)
In addition, if Tmax e < 00, then for q € (3, 00) and B chosen as in (1.7),
e G Dl + llee (Dl + 1471, Dl 20y — 00 238)

ast — Tmax,e.

Upon a straightforward integration of the first two equations in (2.1) over €2, we can establish
the following basic estimates for n, and c;.

Lemma 2.2. For each € € (0, 1), the components ny and c of the solution to (2.1) satisfy

/n€(~,t)=/n0 forall te (0, Tmax.e) 2.9)
Q Q
and
/cg(-,t) < /co,/no forall te (0, Tmax.e)- (2.10)
Q Q Q

Proof. Integrating the first two equations in (2.1) over 2 separately, we can derive (2.9) and

d
E/cg+fc5=/n5=/no (2.11)
Q Q Q Q

for all ¢ € (0, Trmax.s), which along with an ODE comparison argument entails (2.10). The proof
is completed. O

As an auxiliary lemma in this paper, Lemma 2.3 in [20] will be used in our subsequent analy-
sis.

Lemma 2.3. (See [20].) Let T >0, 1 € (0,T), a > 0 and b > 0, and suppose that y : [0, T) —
[0, 00) is absolutely continuous such that

Y(t)+ay(t) <h() forae te(0,T)

with some nonnegative function h € Ll1 010, T) satisfying
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t+7
/h(s)dsfb forall te[0,T —r1).

t

Then,
b
y(t) < max {y(O) +b, — + 2b} forall te(0,7).
art

3. A priori estimates

Based on Lemma 2.1, we can derive a ¢-independent bound for (1.10) following an idea
from [25].

Lemma 3.1. Let « # 0 and a > % Then one can find a constant C > 0 independent of € € (0, 1)
such that

ll7g (-, t)||L2a(Q) + llee (-, t)”LZ(Q) + llue(, t)”LZ(Q) <C forall te€(0,Tnaxe), (3.1)
t+t t+7

//IVng|2+//|Vu5|2§C forall t€ (0, Tnax.e — 1) (3.2)
Q Q

t 1

with 7 = min {1, T2 | an

T T T

/f|Vn‘§|2+ff|Vc€|2+//|Vu8|2§C(T+1) forall T e, Tmaxe). (3.3)
0 Q 0 Q

0 Q

Proof. As mentioned in the introduction, the derivation of the time evolution of [, n2e 4 Jo c?
is considered as a cornerstone of the arguments in the sequel. This can be achieved by a subtle
reasoning as in [25, Lemma 2.3] on the basis of the same construction exhibited by the first two
equations in (2.1). Thereupon, we have

d
o /n§“+clfc§ +C, /|Vng‘|2~|—/|Vc€|2+
Q Q Q Q

/ 2t <Cs (3.4)

Q
and
lne (Ol 2y + llce DNl 2 < Ca (3.5)

for all ¢ € (0, Tmax.s), Where C1, Ca, C3 and Cy4 are positive constants. In addition, according to
Lemma 3.5 in [31], we can derive from the third equation in (2.1) that

EE luel” + [ [Vue|”= | neue - Vo
Q Q Q
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for all ¢t € (0, Thax,¢), Which combined with (1.9) and the Holder inequality yields
2dr luel”+ [ |Vugl SCsllusllLe(Q)llnalng(Q) (3.6)
Q Q

with some Cs5 > 0 for all ¢ € (0, Tiax,¢)- Due to u, =0 on 9€2, the Poincaré inequality provides
Cg > 0 such that

lite -, D w2y < Coll Vite (Dl 2 3.7
for all ¢ € (0, Timax.¢), which together with the embedding theorem entails
s Dl Loy = Crllue (-, Dllwiz) < CeCrllVue (-, )l 12 (3.8)

with certain C7 > 0 for all # € (0, Tinax.¢). In light of (3.7) and (3.8), we apply the Young inequal-
ity to (3.6) and obtain

1d 5 2
s [ el [ 1Vl < ColVuel gy el g
Q Q

)
1 C?
P T s 2
_2/| wl o+ F el
Q
forall # € (0, Tinax.¢), 1.€.

d
- / e +/ Viee 2 < C2 el (3.9)
"3 Q b

for all ¢ € (0, Tmax.e), Where Cg := C5CsC7. By another application of the Poincaré inequality,
we have

d
d—/|us|2 +09/ lue|> < C2nel? 6 (3.10)
t L5(RQ)
Q Q

with some Cg > 0 for all ¢ € (0, Tnax.¢)-
In the case when % <a< %, setting T := min ’ 1, %} and integrating (3.4) over (¢,¢ + 1),
we can find Cj¢ > O such that

+T

//Ivn?FfClo (3.11)
r Q

for all ¢ € (0, Tmax,e — 7). Apart from that, for any T € (0, Tax.¢), an integration of (3.4) over
(0, T) yields
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T T
//|Vn2|2+f/|m|2scn(r+1> (3.12)
0 Q 0

with some C1; > 0. Along with (3.5) and (3.11), we employ the Gagliardo—Nirenberg inequality
to gain

t+t t+t

2
) 2
f el = [ Wi,
L3(Q) L3a ()
t t

t+t

2
<Cn / (1712 g W15+ I 2) (3.13)
t
t+1

2
<cn | (nwzngz(mﬂ)

for all ¢ € (0, Tnax.¢), where C12,C13 > 0 and a = % €(0,1)duetoa € [%, %). Meanwhile,

it can be verified from o > % that

2a
— <2.
o =

Therefore, we can deduce from (3.12), (3.13) and the Young inequality that

t+t t+1
f||ns||2§ §C13//|Vn‘;‘|2+2C13
? L@ ’ (3.14)

<Ci3(Cio+2)

for all # € (0, Trax.¢). Likewise, by virtue of (3.5) and (3.12), we can also find C14 > 0 such that

T
/ Inel?s < Cu(T+1) (3.15)
0 L5(Q2)

forany T € (0, Tmax,e). Combining (3.10) with (3.14), we can infer from Lemma 2.3 that

lue ()l 2@y = Cis (3.16)

with certain Cy5 > 0 for all ¢ € (0, Tmax,¢), Which together with (3.5) gives (3.1). In addition,
along with (3.14) and (3.15), integrations of (3.9) over (¢, ¢ + 7) and (0, T') provide C¢ > 0 and
C17 > 0 such that
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//lVMslzfclﬁ (3.17)

t Q

for all t € (0, Tinax,e — 7) and

T
//IVug|2§C17(T+1) (3.18)
0 Q

for any T € (0, Tmax.)- Thereupon, (3.2) follows from (3.11) as well as (3.17), and (3.3) is valid
from (3.12) and (3.18).

Whereas for o > %, we know from (3.5) that there exists Cig > 0 such that

ne(-,t <C
Ine G0l g o = Crs

for all ¢ € (0, Tmax.¢), which combined with (3.10) and an ODE comparison argument entails

CsCis
llue (-, Ol L2(@) < max § lluollz2(), —— (3.19)

Gy

for all ¢ € (0, Thmax,¢). Thereby, (3.1) is implied by (3.5) and (3.19). Moreover, in view of the
boundedness of ||n£||L%(Q) and (1.7) we can derive (3.2) by integrating (3.4) and (3.9) over

(t,t + 1) forall t € (0, Tnax,e — 7), respectively. Similarly, (3.3) is valid from an integration of
(3.4) and (3.9) over (0, T') with respect to ¢ for all 7' € (0, Trax. ¢ ), respectively. We complete the
proof. O

4. The global solvability of regularized problem (2.1)

The main task of this section is to prove the global solvability of regularized problem (2.1).
For this purpose, we need to establish some ¢-dependent estimates of (n¢, ¢, 1) firstly.

4.1. Some e-dependent estimates

In this subsection, we try to establish the desired e-dependent estimates for n, and ¢, by a
two-step bootstrap argument.

Lemma 4.1. Let k # 0 and o > % Then there exists a constant C > 0 depending on ¢ € (0, 1)
such that

/ng(.,t)gc forall te (0, Tmax.e) 4.1)
Q
f|Vu8(-,t)|2 <C forall te (0, Tmax.e) 4.2)
Q
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and

/ [Vee (-, t)|2 <C forall te(0,Tmnaxe)- 4.3)
Proof. Testing the first equation in (2.1) by n,, we have

1d
EE/rzg-F/IVn£|2:/ngF;(nS)Sg(x,ng,cg)ch~Vn5 (4.4)
Q Q

for all # € (0, Tmax.¢)- Recalling (1.4) and (2.3), one can see that

—_—

ngF(ng) <— and |S,(x,n, ¢)| <Cs

™

for all t € (0, Tmax,¢)- Thereupon, from the Young inequality, (4.4) can be rewritten as

(4.5)

2
forall ¢t € (0, Tnax,e), Where Cq := 2%2' Similarly, multiplying the second equation in (2.1) by ¢,
and using the Young inequality, we obtain

ld 2 2 2
EE ce + [Vee|” + Ce = Fe(ng)ce
Q Q

¢ ¢ (4.6)

for all t € (0, Thax.¢)- Adding (4.5) with Cy x (4.6), we derive

d
G +c1/ /|Vne| +61/§ cifn @47
Q Q

for all ¢ € (0, Tmax,s). Based on (2.9), we deduce from the Gagliardo—Nirenberg inequality and
the Young inequality that

S}
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2 2
/ns('v t) = ||n8(~, t)”LZ(Q)
Q

2
(4.8)

5 C3 <||Vn€( t)”LZ(Q) + 1)

sa/|ws<~,t>|2+c4

with any § > 0 and positive constants Ca, C3, C4 for all ¢ € (0, Tiyax,e). Combining (4.7) with

(4.8), we choose § = 1+C and gain
d 2 2 2 2
o ng+Ci | c; | + ng+Cy | c; | £C4(Cr+1) 4.9)
Q Q Q Q

for all ¢ € (0, Tmax.s), which implies (4.1) by an ODE comparison argument. Hence, if we set

max £

T :=min Hl ] then there exists Cs > 0 fulfilling

t+7

/ /n§ <Cs (4.10)
r Q
forall t € (0, Timax,e — 7)-

In view of (3.1) and D(1 +&A) = W>2(Q) W, (Q) <> L%(S), one can find Cg > 0 and
C7 > 0 such that
1Yere (-, Dllzoo@y = (1 +eA)  ue (D) Lo
< Cellus(-, )l 12(q) (4.11)
=C;

for all ¢ € (0, Tmax.e).- Applying the Helmholz projection P to the third equation in (2.1) and
testing the resulting equation by Au,, we deduce from ||Pwl|;2(q) < [l 2(q) forall w € L%(2)
and the Young inequality that

1d
- |A2u8| +/|Aue| —/Aus Pl—Yeue - Vg +n:Ve]

2 dt
Q
f|Au5| +f|(Ygus Vi 2 +/|nsw>|

55/|Au5|2+C72f|Vus|2+Cg/ng,
Q Q

Q
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i.e.
d 1
E/|A7u8|2+/|Aus|2§2C72/|Vu8|2+2Cg/ng (4.12)
Q Q Q Q

for all ¢t € (0, Thnax,¢), Where Cg originates from (1.9). Since the known regularity estimates for
the Stokes operator in bounded domain [8, p. 82], the Poincaré inequality and the Sobolev embed-

ding theorem guarantee the existence of Cg9 > 0 fulfilling Cy fQ |A%u5(~, t)|2 < fQ |Aug (-, t)|2
for all t € (0, Thax,¢), We can rewrite (4.12) as

d 1 1
E/|A7ug|2+C9/|A7u8|2§2 c%f|w€|2+c8/n§
Q Q Q Q

forall 7 € (0, Tnax,¢), Where if we let y(1) := [, |AZu, (-, )2 and h(r) == 2(C3 [o IVue (-, 0>+
Cg fQ ng(-, t)) for all ¢ € (0, Trnax,¢), then Lemma 2.3 along with (3.2) and (4.10) provides a
C10 > 0 such that

/|A%ua(-,r>|25clo

Q

for all ¢ € (0, Trmax.), which together with [, [A2w|? = [, |Vw|? for all w € D(A) implies
4.2).
Now, multiplying the second equation in (2.1) by —Ac, and integrating by parts, we obtain

1d
EE[|ch|2+f|Acg|2+/|VCg|2=—/Acs.Fg(n5)+f(us.ch)ACS (4.13)

for all # € (0, Tmax.¢), where we derive from (2.4), (4.1) and the Young inequality that

ld 2 3 2 2 2
EE [Vee|” + Z [Ace|” + [ [Vece|” < ng + (g - Veg) Ace
Q Q Q Q Q

<Cu+ /(ua -Veeg)Ace
Q

(4.14)

with certain C1; > 0 for all ¢ € (0, Tinax.s).- Applying the Holder inequality to the second integral
on the right-hand side of (4.14), we obtain

f (e - Ver) Ace < lluell oy 1 Vee I 3y | Acsll 2
Q 4.15)

< Cu2llVeell oyl Acell 2
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for all ¢ € (0, Tnax.¢), Where Cip > 0 stems from (4.2) and the Sobolev embedding theorem.
Along with (3.1), the Gagliardo—Nirenberg inequality gives

IVeell 3y < Ci3 (nAcsan(mucgn o ||cg||Lz<m)

(4.16)
= C14||ACs||Lz(Q) +Cu
with Ci3, C14 > O for all ¢ € (0, Tinax,e). Combining (4.15) with (4.16), we gain
/(us Vee)Acy < CraCra(||Ace || 12 T IACN 2 @) (4.17)
for all # € (0, Tmax.¢)- Thus, by applying the Young inequality to (4.17), we obtain
[ veose s [18at +cs 4.18)

with some Ci5 > 0 and any § > O for all # € (0, Tyax,¢). Choosing § > O suitably large and
inserting (4.18) into (4.14), we can find C16 > 0 and Cy7 > 0 such that

d 2 2
7 IVeel” + Cie | [Veel” <Ci7
Q Q

for all ¢ € (0, Tax.s), which combined with an ODE comparison argument entails (4.3). The
proof is completed. O

Lemma 4.2. Let k # 0 and o > % Then for p > 1 and q > 2 satisfying

2 2a p—3
max |z, — < 1<6oz (4.19)
3q-3 -3

one can find a constant C > 0 depending on ¢ € (0, 1) such that

ll7e (-, t)”LP(Q) + IVee (-, t)“]}q(g)) <C forall te(0, Tmax,s)- (4.20)

Proof. Testing the first equation in (2.1) by pn? ~! with p > 1, we deduce from (1.4), (2.3) and
the Young inequality that

d -1
n”+p(p—1>/ r2en < 202 [ar2gwn,
dt 4
Q

+Cp(p— 1) / 02|, |2
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for all t € (0, Trmax,¢), which implies that

d

3 1
dt nf + (P — )/an |2<C8p(p—l)/np 22|V, |? 4.21)

for all ¢t € (0, Tax,¢). By virtue of (2.4), we can derive the same conclusion as Lemma 2.8 in
[25] by a slight adaptation of the reasoning, i.e.

d g—1 2
Eﬁwsﬁuﬁj\vwcm\
Q Q

(4.22)
<Q24¢*+q) f n2|Vee 72 + (4g% +29) f IVeel ™ |ue* + C)

with some C; > O for all 7 € (0, Tyax,s). Adding (4.21) and (4.22) together and invoking the
Holder inequality, we obtain

d 3(p—1 2 —1 2
— /n§+/|ch|zq +—(p )/|Vn52 |2+—q /‘V|ch|q‘
dt p 2q

Q Q Q

Q

<Cip(p—1) / n? =2V 2 + (297 + q) f n2|Vee 7% + (4q% +2q) / IVee | ue > + C
Q

<Cip(p—1) f n3 (P20 f |Vee | (4.23)

Q Q

)
Wity

3

+Q2q* +9) / n / [Vee|0@—D

Q Q
1
3

(4?1 29) f|ue|6 /IVcqu +e

W=

Wit

for all ¢ € (0, Timax.e)- Then we apply the Gagliardo—Nirenberg inequality to find positive con-
stants C», C3, C4 and Cs such that

1

3

o g 22
/ns(p_ ®) ”né‘ “ 6(p 2a)
o L@ (4.24)

2(p—2a)

1
< Ca (1913 I g vl
P
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forall t € (0, Trax,¢) and

3

[rver) =[iwer|;
Li ()
Q (4.25)

2

2
q

q
<ci(fomer g e+ wer] )
L2() Lq(ﬂ) Lq(ﬂ)
for all t € (0, Trax,¢) as well as

2

’ p 4
/ni —Infy7,

L7 ()

Q (4.26)

4

2
< v £ I—ay 2
<Cy (n né % q Iné ||L%( +lIn: ||”(m)
forall t € (0, Trax,¢) and

3 z(q )

/Wc ) =|iveerr] d
4.27)

2(q—1)

1-b; q
2 + H| €|qH
L9(R2) L‘I(Q)

by
<Cs <HV|VCe|q

| 1veere|

LX)

3p— 2p
for all # € (0, Tax.e), Where aj = % €. duetop>20+3% b =5€01),a=
q
2 €(0,1) and by = 3q € (0, 1). In view of Lemma 4.1, we combine (4.24) with (4.25)
and (4.26) with (4.27), respectwely, and gain positive constants Cg as well as C7 such that for all

re (Oa Tmax,s)

1
3 3

f n3(P=20 / Ve

Q Q
ay(p—2w) by

P ) q
/|Vn€ : f‘vwcew‘ +1
Q Q

(4.28)

and
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2 1
3 3
/n;j / |V |04—D
“ g 4.29
2ay by(g—1) (4.29)
P
4 2 2
<c /|Vng| +1d /‘V|Vc8|q’ +1
Q Q

From (4.19), it can be verified that

-2 b 2 ba(g — 1
alp=20) b g 22 @D
p q p q

11

thus an application of the Young inequality provides some Cg > 0 satisfying

3

1 2
3 3 3
/ ng P2 / Vel |+ / n / Ve, 06D
Q Q

Q Q

E2 2
53/|Vn§| +3/‘V|ch|q’ +Cy
Q Q

1
3

(4.30)

with any 6 > O for all # € (0, Thax.¢). Apart from that, in light of (4.2) and (4.3), we deduce from
the embedding theorem and the Gagliardo—Nirenberg inequality that

I

1
3

Jute) | [rvere) <cofiver
Q Q

§C10<HV|VC8|q

2

L3()

1—a3

2 + H|Vce|q’
L1(Q)

as

[1veere]

2
7 )
L7(Q)

4.31)

LX(2)

< Cu| VIvel|

2a3
+Cin
L2(Q)

with positive constants Cg, C1g and Cy; as well as a3 = ;’Z—j € (0,1) for all ¢t € (0, Trax.e)»

which combined with the Young inequality implies

1
3
2
[t | [rvere) < [[miver| +cu (4.32)
Q Q

Q

with some Ci2 > 0 and any § > O for all ¢ € (0, Tmax.e). Additionally, based on (3.1) and (4.3),
another application of the Gagliardo—Nirenberg inequality along with the Young inequality gives
positive constants C13, C14, C15 and Cj¢ fulfilling
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2o, 2l I 2
<Ci3 (IIVm:2 IIL‘E(Q)Ilna2 I A lné IIL%(Q)
LP (Q)

(4.33)
P
< CuallVal 5 + Cua
)4
SC14f Va2 |> +2C14
Q
for all # € (0, Tinax.¢) and
/Wc P = ve.re|’
3 e 12(9)
Q
as 1—as
<Cis (wam [iveelr| 2 +|ivee) )
L2(Q) L(Q) L4(Q) (4.34)

= Ci| VIVe

2as
+ Ci6
L%()

< C16/ ‘VIVCEI']‘Z +2C16
Q

for all 7 € (0, Tmax.e), Where as = gﬁ:gz €(0,1) and a5 = % € (0, 1). Choosing properly

large § > 0, we substitute (4.30), (4.32), (4.33) as well as (4.34) into (4.23) and are able to find

C17 > 0 and Cqg > 0 such that

d
o /nf-l—/chEIM +C7 /nf+/|V65|2q <Cig (4.35)
Q Q Q Q

for all ¢ € (0, Tmax.¢), and thereby (4.35) implies (4.20) by an ODE comparison argument. We
complete the proof. O

In light of Lemma 4.2, we can derive the following corollary according to the reasoning of
Corollary 2.3 in [25].

Corollary 4.1. Let « # 0 and o > % Then for any p > 1 and q > 1, there exists some C > 0
depending on ¢ € (0, 1) such that

e Ollr@) +1IVe (- llae) <€ forall t € (0, Tmaxe)- (4.36)
4.2. Global solvability of problem (2.1)

With Corollary 4.1 at hand, we are able to prove the global solvability of problem (2.1).
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Proposition 4.1. Let k # 0 and o > % Then the solution established in Lemma 2.1 is global in
time for each € € (0, 1).

Proof. Applying the Helmholtz projection to the third equation in (2.1), we have
Ugr + Aug = P[—Yeue - VIug +n:.Vel. (4.37)

Set ho(x,t) :=P[—Yeue - VIug +n Vo], then from (4.11), (4.2), (4.36) and (1.9) one can find
C1 > 0 such that

lhe . DllL2) = C1 (4.38)
for all t € (0, Trax,¢)- It follows from the variation-of-constants formula that

t
up(-, 1) = e ug+ / e AR (., 5)ds (4.39)
0

for all ¢ € (0, Tmax.¢)- According to the smoothing properties of Stokes semigroup [6], for any
Be (%, 1) we apply AP to (4.39) and then obtain

t
1APue () 12y < IAP e Auoll 12y + / 1AP e~ Ao (9 12y ds
0

t
_ _ 4.40
< Cot P lugl 2y + Co / (t = )P e )l 2y (4-40)
0

1—
Cl C2 Tmaxf,}s

< Caot Pllugll 2y + 1—p

for all ¢t € (0, Tinax,¢). If we let T := min{l, %}, then due to D(AP) < L®°(Q) [9,7] and
(4.40), there exist C3 > 0 and C4 > 0 fulfilling

e (- Ollz) < C3lAPue (-, D)l 20y < Ca (4.41)

for all t € (7, Tax,¢). Another application of the variation-of-constants formula to the first equa-
tion in (2.1) entails

t

ne( 1) =" 8n, (1) — / V"IV Ang (-, $)FL (e (-, ))Se (X, 15 (-, 5), €6 (-, ) Ve (-, 5)

T

+ né‘('5 s)“&(" S)}ds
4.42)
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forall t € (21, Thax,¢)- Define B := —A 4 1 under homogeneous Neumann boundary conditions

in L"(2), and then for fixed p € (0, %) we choose r > 3 sufficiently large fulfilling r > %,
ie. 2p — % > 0, which implies D(B”) < L*(€2) [9]. From (1.4) and (2.3), it is clear that

|Se(x, ng, ce)| < Cs and sF/(s) < % for all s > 0. Thereupon, together with (2.9), (4.36) and
(4.41), we deduce from (4.42) that

lne(, HllLe@)

< 1" 21 (Tl Lo ()

t
+ f "2V Ang (-, $)FL(ns (-, $)Se (X, ne (-, 5), e (-, ) Ve (-, 5)

+ne(, ue (-, )} Lo @)ds

<120 (-, T Lo (@)

t
+/ IBP"™9AY {na (-, $)FL(ne (-, )Se (x, 16 (-, 5), e (-, $))Vee (-, 5)

+ne(, ue (-, )Hr@ds (4.43)

=" n.(, Ol (o)

t
+/ﬁ||Bﬂe*%Be’%°'AV-{n8<-,s)Fg<ng(-,s))sgoc,ng<-,s>,cg<~,s))Vcs(~,s)
+ne(, ue (-, ) Lrds

t

_3 s (t—s\ "2
<Cst—1) z||ng<-,r>||m)+csfe : (T) Ve G )l @)

T
+ lue (-, )llLoe@ Ine (-, )l Lr () }ds
<C¢

with C5 > 0 and Cg > O for all # € (27, Trmax,¢). Recalling (4.36), we know that there exists
C7 > 0 satisfying

[Vee (Ol o =C (4.44)
Lq+3(9)

for any ¢ > 2 and all ¢ € (0, Tipax,¢). From (4.44), (3.1) and the Gagliardo—Nirenberg inequality,
we can derive

llce (Ol La@) < Cs [ IVee (DI 6 IICs(-,t)IIILZf’Q)+||cs(~,t)||Lz(Q)
Lq+3(Q)

(4.45)
<Gy
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for all f € (0, Tinax,¢), where Cg, C9 > 0 and a = 4 G (0, 1). Combining (4.36) with (4.45),
one can find Cyg > 0 fulfilling

llee - Ollwraq) = Cio (4.46)

for any ¢ > 3 and all ¢ € (0, Tiax,¢), which along with (4.41) and (4.43) contradicts to the blow-
up criterion (2.8). Thus, we infer that Tipa . = 00 and prove the lemma. 0O

5. Proof of the main result
5.1. Some further g-independent estimates

In this subsection, we devote to establishing some ¢-independent bounds for spatio-temporal
integrals of n., c; and u,, as well as deriving certain regularity features of the time derivatives in

(2.1), so that it is possible to take limits of n., c; and u, as € — 0 in the next subsection.

Lemma 5.1. Let « # 0 and o > 5. Then there exists C > 0 independent of € € (0, 1) such that

T
’ . e i Jza<d,
nf <C(T+1) forall Te(0,00) with g={ 3 1 (5.1
Taa lf‘ azjy
0 Q
j Sy dasd,
//|Vns|V§C(T+l) forall T e(0,00) with y= 2;%3, if t<a<l, (52
0 Q 2, if a=>1,
and
T
//| I8 <C(T+1) forall T e(0,00). (5.3)
0 Q

Proof. In the case when % <a< 1 we can derive from (2.9) and the Gagliardo—Nirenberg

2 b
inequality that

z 20at) 2Ge+1)
// /w%nnmm dt
0 Q 2
200+1)

3a
{IIVH“( t)llf%)ll 2 C t)||3"+l +|In“( DIl 1 (Q)} dt  (5.4)

<C

=G [ {IVnE 012 g + 1} ar

S— O\ﬂ
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with C; > 0 and C, > 0. Whereas for o > Q based on (3.1), another application of the
Gagliardo-Nirenberg inequality yields

T T

// /Iln C, t)l %0 )dl

0

RS

3 2

= o [ {IVnE 0120, + 1} ar,

St— o O —

where C3 and C4 are positive constants. Hence, (5.1) is implied by (3.3), (5.4) and (5.5).
When 2 z<a< é, one can see that

4 _
1 ang  BetDA-O
3o+ 1 2

By virtue of the Holder inequality with exponents 5~ +1 and 5= 3 , we deduce that

T T et
Sl |Vne| ™5 Gothi-a
|Vne|™2 = 8 h, 2
BGa+)(1—a)
2
0 Q 0 Q &

3a+1
7

|Vn8|2 z 2('5a+1)
/ f s / / n. (5.6)
0

3a+1 Ot
T 4 T

1 2('501+1)

a2

— [ [ 1vne] n

0 Q 0

which along with (3.3) and (5.1) yields (5.2) with y = 3‘”1 for 2 z<a<jy
% <a < 1, it is clear that

ct

Apart from that, if

2 3 10a (1 —
* >1 and M>0.
Sa 20 + 3

Thereupon, by means of a similar argument as (5.6), we achieve that

T T 10
10a |Vng|2ers 1l
|Vns|2a+3 = W - Ng
0 Q 0 Q

2a+3
g o+
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3—-3«
T 2a+3 2a+3
- |V |? 57
< 0w (5.7)
ng
0 Q
Sa 3-3a
T 2a+3 T 2a+3
1 10
— o2
= a_2 Vi ng )
0 Q 0 Q

and whence for 3 3 <a<1(52)withy = 210“ is valid from (3.3) and (5.1). Whereas for o > 1,
we test the first equation by n, and deduce from (2.3), [n:S¢(x, ng, cg)| < Cs and the Young
inequality that

1d
——/l’lg+/|vn8|2:/nng/(ns)Ss(xans,Cs)vca'Vns
Q

< Cs/ [Vee| - [Vnel

1
§f|vns| + = /|ch|

i.e.

d
E/n§+/|we|zscgf|ws|2 (5.8)
Q Q Q

for all ¢ € (0, 00). Together with (3.3), an integration of (5.8) over (0, T') with respect to ¢ entails
(5.2) withy =2 fora > 1.

Finally, in view of (3.1) and (3.3), (5.3) can be established by the reasoning of (3.34) in [31]
and thereby we complete the proof. O

Lemma 5.2. Let k #0 and o > % Then one can find a positive constant C independent of
e € (0, 1) satisfying

10Ga+1) 3
/ 0] gy, A= CTAD) foral Te@o0) i G sas
2[a-8 (Q))* 7

10a 1
/||ngt(.,;)||3a+]3 w dISCT+1) forall Te@O00) if s<a<l (510
(W73 (@)

5
/||n5,(~,t)||3 s dt<C(T+1) forall Te(0,00) if a>1, (5.11)
W2 (@)*
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/ oGO g5 e < CT+1) forall T € (0,00 5.12)
and
S
f liter (-, t)||(4w&§(m)*dz <C(T+1) forall T e(0,c0). (5.13)

Proof. If % <a< %, an elementary calculation ensures that

10Ba+1)(1 —a) 2QBa+1) a 10Ba+1) 3Ba+1
< <
13 — 6 3 9a+2) 2

(5.14)

For ¢ € (0, 00), testing the first equation in (2.1) by any fixed ¢ € C (), we deduce from the
Holder inequality that

)fns,c,r)w\ =\—/Vna~w+/nsF;<ns>Ss<x,ns,cg>vC£-w+/ngu£~w)
Q Q Q Q

{||Vn5|| 10(3u+1) —|— ||n8F (ne)Se(x,ne, ce)Vee|l 106a+1
@) (Q LO@FD (Q)

+ llneue || 19GetD) } Nl 10Gesn
O(@+2) () W 2le=8 (Q)

(5.15)
Along with (1.4) and (2.3), (5.15) further implies that
T
10B3a+1)
9(a+2
/ lImer (-, z>|| ”13%1) dr < / {nwgn o
‘20a=8 (Q))* +2) (Q)
0
+ Ine FL(ng)Se (x, ne, ce)Veell 106atn
L 9@+ (Q)
10B3a+1)
” ” 9(a+2) dt
+ ||neu 103a+1)
el S @) (5.16)
T T
10B3a+1) 10G3a+1)
_Cl//|vn8|—9(a+2) —i—Cl//ln RAVAN R ICES)
0 Q 0 Q
T
10Ba+1)
+C1/ Ineutg| 9@t
0 Q

with some C; > 0 independent of T € (0, co0). Due to (5.14) and (5.2), we use the Young in-
equality to find C, > 0 such that
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T T
10Ba+1) 3a+1
// |Vn | O(@+2) < / / |Vn€|T + |Q|T
(5.17)
0
=C(T+ 1D

for all T € (0, oo0). Again employing the Holder inequality, we derive from (5.14), (5.1), (3.3)
and (5.3) that

T T
10G3a+1) 10Ga+ 1 (1—0) 10Ga+1)
//|nl “VC | 9@+2) /f”s 9(at2) |V, | etD
0 0 Q
13—60 5GatD)
T 9(a+2) T 9(a+2)
10Ge+ A —a)
//n [ [1ver
(5.18)
0 0 Q
5(1—a) 5Q@a+1)
T 3(@+2) T 9(@+2)
9u—2 2Ga+D)
= (I2]T) %@ //”a : //|Vcs
0 Q 0
<Ci3(T+1)
for all T € (0, co) and
3a+1
T 3(a+2) T 3(a+2)
10(3a+1) 2(3a+l) g
[neug| 9@ < Ug
/ (5.19)
0 Q 0 Q
<Cy(T+1)

for all T € (0, 00), where C3, Cy4 are positive constants. Thus, (5.9) is valid from (5.16), (5.17),
(5.18) and (5.19).
In the case when % <a < 1, it is not difficult to verify that

10 (1 — 10 10 10
Do =) 100 4 ¥ 2 (5.20)
3 -2« 3 304+3 2a+43
Along the reasoning of (5.16), we can find Cs > 0 such that
T T
] oo I—a w5
||n£,( t)|| “ e dt < Cs |Vng|3«+3 + Cs |ng *Veg|3a+3
Ta=3 (Q))*
0 Q 0 Q
(5.21)

T
10a
+ Cs |[ngug|3+3,
0 Q
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In light of (5.20) and (5.2), an application of the Young inequality provides C¢ > 0 such that

T

T
//Nmﬁ%fffw%ﬁ%+mw
s (5.22)

0 Q
=Ce(T+1)

forall T € (0, 00). Based on (5.20), (5.1), (3.3) and (5.3), we deduce from the Holder inequality

that
z z 100 (1—e)
10 (1o 10
//|néfavc8|3a+3 ://ns 3a+3 |Vcsl3a+3
0 Q 0 Q

3-2a Sa

T 3a+3 T 3a+3
10a(1—a)
< / ng 3 //|ch
5.23)
0 0 (
S5a
T l+a T 3a+3
1V
< (IQIT)=" //w3 //sz
0 Q 0 Q

<Ci(T+1)

forall T € (0, o0) and

T

IOa
//|ngu6|3a+3 < f/
0 Q

=C(T+1)

1

o
I+a T+a

T

10

u3
//5 (5.24)
0 Q

with C7, Cg > 0 independent of T € (0, co). Substituting (5.22), (5.23) and (5.24) into (5.21),
we achieve (5.10).
Whereas for « > 1, it follows that |n.S¢(x, ng, ce)| < Cs as mentioned before. Along with

(2.3) and by a similar argument as the case 3 <a < 5, we can derive

T T T
3 5 5
/Ilnst( t)ll dl§C9//|Vna|3 +C9//|VC8|3 +C9//|nsua|3 (5.25)
wh 2(9))* D G

0 Q 0 Q

with some C9 > 0 independent of 7 € (0, 00), where an application of the Young inequality

gives
//an 3 5//|Vng|2+|Q|T (5.26)
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for all T € (0, o0) as well as

T T
//|Vcs|% 5//|VCS|Z+IQ|T (5.27)
0 Q 0 Q
forall T € (0, co) and a utilization of the Holder inequality entails

1
T 2 T

T 3
5 10 10
//mgugws f/n f/wgw (5.28)
Q 0 Q Q

0 0

for all T € (0, 00). Relying on (5.2), (3.3), (5.1) and (5.3), we can establish (5.11) by inserting
(5.26), (5.27) and (5.28) into (5.25).

Next, we test the second equation in (2.1) by ¥ and use the Holder inequality to gain
| [eucnnw]=|- [vec-vu = [evs [ Faow+ [ vyl
Q Q Q Q Q

< .
< {HVCsHLg(Q) el o FIE@N 5 o+ ||cgug||L3(m} 1 llwi s

(5.29)

for all ¢ € (0, c0). Since % < 2(3%—"'1) thanks to o > %, together with (2.4), the Young inequality
and the Holder inequality, (5.29) further implies that

T T T T T
5 5 5 5 5
[1eatonysgpdr=cu [ [1vaiscn [ [eircuf [nivcnf [
0 0 Q 0 Q 0 Q 0 Q
T T T
2 2 20atD
Sclo//IVCsl +C10//C£+C10//n8 +3C1o0|QT
0 Q 0 Q 0 Q
5 3
T 3 /T 5
2 10
+Cio C; lug|3
0 Q 0 Q

(5.30)

with certain C1g > 0 independent of T € (0, 0c0), which combined with (3.3), (3.1), (5.1) and
(5.3) yields (5.12).

‘We have known that % < M, thus according to the reasoning of (3.39) in [31], (5.13) is
valid from (3.1), (3.3), (5.1) and (5.3). The proof is completed. O
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5.2. Passing to the limit

Relying on the estimates established in Lemma 3.1, Lemma 5.1 and Lemma 5.2, we can
take the limit of the approximated solution (ng, ce, u;) as € — 0 and show that the limit is a
global weak solution in the sense of the following definition. From now on, for vectors v € R3
and w € R3 we use v @ w to represent the matrix (b;;); je(1,2,3} € R3*3 with bij == vjw; for
i,jel{l,2,3}.

Definition 5.1. Let « £ 0 and « > %, and suppose that S complies with (1.4). Then we call a

triple (n, c, u) of functions is a global weak solution of problem (1.3), (1.5) and (1.6), if it fulfills
n>0,c>0aswellas V-u=0ae.in Q x (0, 00), and

ne L}, (10,00); Wh(Q)),
c € L}, ([0, 00); W' (Q)), (5.31)

ueL).(10,00); Wy (2 R?)),

loc

and furthermore,

nS(x,n,c)Ve, nu as well as cu belong to L}OC(S_Z x [0, 00); R3)

_ (5.32)
andu®@u e L] (Q x [0,00); R?),
additionally, for any ¢ € CgO(S_Z x [0, 00)), the components n and c satisfy
o) o o0
—/fn¢t—/n0¢(-,0)= —//Vn~Vg0+[/n8(x,n,c)Vc-V<p
0 Q Q 0 Q 0 Q (5.33)
o
+//nu~th
0 Q
as well as
o0 o o o0
o fomir=] frese- T fovs ] o
Q Q Q Q Q
° ° ° ‘ (5.34)

+

/cu-Vgo,
Q

while for any ¢ € C§° (Q x [0, 00); R3 ) fulfilling V - ¢ =0, the component u complies with

—f/uwpt—/uo-fp(-,O)=—//Vu-V(p+K/fu®u-V(p+//nV¢~go. (5.35)
0 Q Q 0 Q 0 Q 0 Q
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Lemma 5.3. Let k # 0 and a > 3 and let (ng, cs, ug) be the solution of (2.1) as constructed in
Proposition 4.1. Then one can choose (¢;) jen C (0, 1) satisfying £; (0 as j — 00 such that

3a+1 if 3 <1
_ 2 7= 2
ne —ninL] (2 x[0,00)) withy = 2(11033’ if Y<a<l, andae. inQ x(0,00),
2, if a>1,
(5.36)
Mt if S<a<i,
Vne—=vVn in Lj, (Qx[0,00) with y=13% i L<a<l, (5.37)
2, if a>1,
ce—c in L} (Qx[0,00) andae in x(0,00), (5.38)
Vee— Ve in L}, (Qx[0,00), (5.39)
Ve — Ve aein Q2 x(0,00), (5.40)
ue—u in Lj, (2x[0,00) andae in $x(0,00), (5.41)
o _
ue—u in L3 (Qx]0,00)) (5.42)
and
Vue —Vu in L}, (S x [0,00)) (5.43)

hold as ¢ 0 with some triple (n, ¢, u) of functions complying with Definition 5.1.

Proof. From Lemma 3.1, Lemma 5.1, Lemma 5.2 and the Aubin-Lions lemma [22], we can de-
rive (5.36), (5.37), (5.38), (5.39), (5.41), (5.42) and (5.43) with some triple (n, c, u) of functions
belonging to the indicated spaces by a choice of some sequence (¢;) jen C (0, 1) with &; N 0 as

Jj — oo. Denote a;(x,t) := —cg + Fe(ng) — (us - Vcg). Together with (2.4), we make use of the
Young inequality to obtain

forall T € (0, co) and

T T T

5 5 2Gat 1)
//|Fs<ns>|15/fn:s/fng T
0 Q 0 Q 0 Q

forall T € (0, 0co) due to 45‘1 < M Also, an application of the Holder inequality entails
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3 5
T T g T 8
5 10 2
lug - Vee|4 < ue| 3 [Veel
0 Q 0 Q 0 Q

forall T € (0, 00). Therefore, recalling (3.1), (5.1), (5.3) and (3.3), we know that ¢,y — Ac, = a,
is bounded in L% (2 x (0,T)) for any € € (0, 1), which also implies (c¢)s¢(0,1) is bounded in
LfT (0, T); Wlf—t (£2)). Along with (5.12), the Aubin-Lions lemma insures the relative compact-
ness of (cg)ec(o,1) In LfT 0, 7); Wl'g (£2)). We can pick an appropriate subsequence which is
still written as (¢;) jen such that chj — 71 In L%(Q x (0,T)) for all T € (0, c0) and some
71 € L%(Q x (0, 7)) as j — oo, and this also implies Vc,; — 21 a.e. in €2 x (0, 00) as j — 00.
By virtue of (5.39), the Egorov theorem shows that z; = V¢, and whence (5.40) is valid. In

addition, for each fixed T € (0, 00), the convergence (5.41) insures the existence of a null set
N7 C (0, T) such that one can pick a subsequence which we still denote by (¢;) jen fulfilling

ug(-,t) > u(-,t) in Lz(Q) forall re(0,T)\Nyr as e=¢;\(0. (5.44)

Now, we try to verify that the triplet (n, ¢, u) is the desired solution in the sense of Defini-
tion 5.1. To begin with, the regularity (5.31) can be inferred from (5.36), (5.37), (5.38), (5.39),
(5.41) and (5.43), and moreover, n > 0,c > 0aswellas V-u =0 a.e. in 2 x (0, oo) are implied
by the nonnegativity of n,, ¢, and V - u, =0 a.e. in Q2 x (0, 00), respectively. If % <a< %, then
combining with (1.4) and (2.3), we apply the Holder inequality to gain

T T

3a+1 datl - 3o+l
//mng/(ns)Ss(xvnas ce)Vee| 2 SCSZ //Ing avcs| 2
Q Q

0 0
3—3« 3a+1
T 4 T 7
3o+l 23a+1)
<cy? ‘//w3 !//W%F
0 Q 0 Q
(5.45)
for all T € (0, o0), and analogously, for % <a < 1, we also have
T T
/ a3 - e
// [ne Fy(ng)Se(x, ne, ) Vg | 2243 < CS(H—" // |ng Vg |22+3
0 Q 0 Q
33« Sa (546)

32 3+2a

T T
10a 100 5
< //%3 //Wm
0 Q 0 Q

for all T € (0, 00). Whereas for a > 1, it is clear that for all 7 € (0, c0)
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T T
2 2 2
[ [merimoscnecover < [ [1ve (5.47)
0 Q 0 Q

due to (2.3) and |nSe (x, ng, ¢)| < Cs. Thereupon, in view of (5.1) and (3.3), we can infer from
(5.45), (5.46) and (5.47) that

ngFg/(ng)Sg(x, ng,ce)Vee —zo in LY (Q x (0, T))

3a+1 : 3 1

o i gse<y, (5.48)
with y=1 7% if j<a<l, as e=¢g\0

2, if a>1

’

for each T € (0, c0), and on the other hand, it follows from (1.8), (2.2), (2.5), (5.36), (5.38) and
(5.40) that

neFl(ng)Se(x,ne, ce)Vee > nS(x,n,c)Ve ae.in Qx (0,00) as ¢ =¢; 0. (549
Again by the Egorov theorem, we gain zo =nS(x, n, ¢) Ve, and hence (5.48) can be rewritten as

ne Fl(ng)Se(x,ng, ce)Vee = nS(x,n,c)Ve in LY (Qx (0,T))

3kl i 3 1
o i =<y, (5.50)
with y=1 5% if J<a<l, as e=¢ \0
2, if a=>1,

for each T € (0, 0co), which shows the integrability of nS(x,n, c)Vc in (5.32) as well. It is not
difficult to verify that

10«

10Ba + 1)
= >
300 +3

9(a +2)

>1 for 1 for

<a< and

| W
| =

Thereupon, recalling (5.19), (5.24) and (5.28), we infer that for each T € (0, co0)

10@Ba+1) 3 1
Sty M 7Sa<j,
neug —z3 in LY(Qx(0,T)) with 6= e if b <a<l, ase=¢; \,0,
3, if ax>1,
(5.51)
and furthermore, (5.36) and (5.41) imply that
neg —nu ae.in Q2 x (0,00) as e=¢; 0. (5.52)

Along with (5.51) and (5.52), the Egorov theorem guarantees that z3 = nu, whereupon we derive
from (5.51) that
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10Ba+1) 3 1
Sty - i Fa<j,
neupg —nu in LY(Q2x(0,T)) with 6= e if Y<ae<l, ase=¢; \,0
3, if ax>1,
(5.53)
for each T € (0, 00). As a straightforward consequence of (5.38) and (5.41), it holds that
cete —>cu in L}, (2 x[0,00)) as e=g; \,0. (5.54)

Thus, the integrability of nu and cu in (5.32) is verified by (5.53) and (5.54). According to the ar-
gument of [18, Theorem V.3.1.1] and along with (5.44), a utilization of [|Yew||;2q) < Wl 2(g)

forall w € L(Z7 () and Yow — w in L2(Q) as e N\ 0 entails that for each t € (0, T)\Nr

I Yeue (G, t) —ul, )l 2 < 1¥e e, 1) —ul, 1)) 12y + 1 YeuC, 1) —ul, 2
S ueCot) —uC,Dllp2q) + 1Yeul, 1) —ul, )2

—0 as e=¢;\(0,

and apart from that, (3.1) and (5.44) allow for a choice of C, > 0 fulfilling

2
1Yette (1) = G D25, < (1Yette G0l 20y + G D)l 20

2
< (lue GOl 2y + IuC Dl 2
<Cp forall te(0,T)\Nr and ¢e€(0,1),

so that we can infer from the dominated convergence theorem that

T
/||Ygus(o,t)—u(~,t)||%2(9)dt—>0 as e=¢;\(0 foreach T €(0,00),
0

ie.
Yeue —u in L} .(Q2x[0,00) as &=¢; \0.
Hence, combining with (5.41), we arrive at
Yeue Que »u®u in L,.(2x[0,00) as &=¢g;\0. (5.55)

From (5.55), we know that u ® u is integrable, and consequently (5.32) is valid. Finally, for any
fixed T € (0, 00), we can derive
| Fe(ne) —nllLy@x©,1y) < 1Fe(ne) — Fe() Ly @x©,1)) + 1 Fe(n) — nllLy@x0,1))

< F/llL=0,00lne —nllLr@x0,1)) + | Fe(n) — nllLr @x©,7))
(5.56)
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with
—30‘2“, if %§a<%,
y = %, if % <o <l,
2, if a=>1

)

where we have known that
lne —nllLy@x©,1) = 0 (5.57)
thanks to (5.36). Besides that, we also deduce from (2.4) that
IFe(n(,0) = n(. 010y <27 1nC D1 ) (5.58)

for each t € (0, T), which together with (5.36) shows the integrability of || F.(n(-,1)) —
n(-,t) ||ZV (@) On (0, T'). Thereupon, by virtue of (2.5), we infer from the dominated convergence
theorem that

T
/||F8(n(-,t))—n(-,t)||{ym)dz—>o as e=¢; \0 (5.59)
0

for each T € (0, 00). From (5.56), (5.57) and (5.59), we can see clearly that

Fe(ng)—>n in L] (Q2x[0,00) as e=¢g;\ 0 (5.60)
with
M it 3sa<d,
y = 2%1%3’ if %§a<1,
2, if a>1.

Relying on (5.36)—(5.39), (5.41), (5.43), (5.50), (5.53)—(5.55) and (5.60), we can take ¢ = &; \( 0
and thus establish (5.33), (5.34) and (5.35) by standard arguments from the corresponding weak
formulations in (2.1). The proof is completed. O

Proof of Theorem 1.1. Theorem 1.1 directly follows from Proposition 4.1 and Lemma 5.3. O
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