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Abstract

We show the existence of locally bounded global solutions to the chemotaxis system⎧⎪⎪⎪⎨⎪⎪⎪⎩
ut = ∇ · (D(u)∇u) − ∇ · ( u

v ∇v) in � × (0,∞)

vt = �v − uv in � × (0,∞)

∂νu = ∂νv = 0 in ∂� × (0,∞)

u(·,0) = u0, v(·,0) = v0 in �

in smooth bounded domains � ⊂ R
N , N ≥ 2, for D(u) ≥ δum−1 with some δ > 0, provided that m >

1 + N
4 .

© 2016 Elsevier Inc. All rights reserved.

MSC: 35K55; 35A01; 35K65; 92C17

Keywords: Keller–Segel; Chemotaxis; Nonlinear diffusion; Global existence; Boundedness

1. Introduction

Even simple, small organisms can exhibit comparatively complex and macroscopically ap-
parent collective behaviour. Bacteria of the species E. coli, for example, when set in a capillary 
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tube featuring a gradient of nutrient concentration form bands that are visible to the naked eye 
and migrate with constant speed. Following experimental works of Adler (see e.g. [1,2]), in 1971 
Keller and Segel [14] introduced a phenomenological model to capture this kind of behaviour, a 
prototypical version of which is given by{

ut = ∇ · (D(u)∇u) − ∇ · (u
v
∇v) in � × (0,∞)

vt = �v − uv in � × (0,∞)
(1)

with D(u) ≡ 1. Herein, u represents the density of bacteria and v is used to denote the con-
centration of the nutrient. In the model in [14], the diffusion coefficient D(u) is supposed to be 
constant, thus leading to the typical effect of linear diffusion which causes any population to 
spread with infinite speed of propagation. In order to avoid this (biologically clearly unrealistic) 
behaviour, it might be desirable to allow for diffusion of porous medium type (i.e. D(u) = um−1), 
cf. also [3, p. 1665].

Nevertheless, starting with [14], the model with linear diffusion has successfully been em-
ployed to find travelling wave solutions (see e.g. the overview in [37] and references cited therein) 
and also their stability has been investigated [19,27].

In spite of the rich literature concerned with travelling wave solutions (for such solutions to 
related systems see also [24,25,20], or [11,26]), little is known about existence of solutions for 
more general initial data (see below).

The difficulty lies in the hazardous combination of the consumptive effect of the second equa-
tion on the nutrient concentration with the singular chemotactic sensitivity in the first: While the 
second equation compels v to shrink, it is the cross-diffusive contribution of the chemotaxis term 
that seeks to enlarge the solutions to (1). And it is this very term that is furnished with a large 
coefficient whenever v becomes small.

For a moment leaving aside the logarithmic shape of the sensitivity in ∇ · (u
v
∇v) =

∇ · (u∇ logv), we are led to the system{
ut = �u − ∇ · (u∇v),

vt = �v − uv,
(2)

which also appears as part of chemotaxis fluid systems intensively studied during the past six 
years. (The interested reader can consult the introduction of [16].) Even in (2), global existence 
of classical solutions is not yet known, apart from 2-dimensional settings [41] or under smallness 
conditions on v0 [35].

Although the mathematical difficulty in treating the system vastly increases when a logarith-
mic sensitivity is included, this form is important. Not only is it needed for the emergence of 
travelling waves [14,13,32], there are also models giving a detailed mechanistic basis [45] and 
experimental evidence asserting this form [12].

In those Keller–Segel models (cf. [10,9,3]) where v does not stand for a nutrient to be con-
sumed but a signalling substance produced by the bacteria themselves, i.e. the evolution is 
governed by {

ut = �u − χ∇ · (u
v
∇v),

vt = �v − v + u,
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the singularity in the sensitivity function is mitigated by v tending to stay away from 0 thanks to 
the production term in the second equation. (For this system, global solutions are known to exist 
if χ is sufficiently small, where the precise condition depends on the dimension as well as on 
whether classical [17,40,4] or weak solutions [34,40] are considered and on radial symmetry of 
initial data [4,28]; but for large χ also blow-up may occur in the corresponding parabolic–elliptic 

system [28].) The proof of boundedness of solutions for χ <

√
2
N

in [6] even relies on the second 
equation actually ensuring a positive pointwise lower bound for v.

In (1), we cannot hope for such a convenient bound and thus have to deal with the influence 
of the actual singularity in the sensitivity function.

Nevertheless, for D ≡ 1, in the domains R2 and R3 a global existence result was achieved 
for initial data that are H 1 × H 1-close to (u, 0) for some u > 0 [38]. The proof rests on energy 
estimates for a hyperbolic system into which (1) can be converted by means of the Hopf–Cole 
type transformation q := ∇v

v
that had been introduced in [18] for the treatment of an angiogenesis 

model.
More recently it has become possible to treat general initial data (the only restrictions being 

positivity and regularity assumptions) for the system in bounded planar domains [43], where it 
was shown that global generalized solutions to (1) with D ≡ 1 exist whose second component v
moreover converges to 0 with respect to the norm in any Lp(�) for p ∈ [1, ∞) and to the weak-∗
topology of L∞(�). If, moreover, the initial mass of bacteria is small, the solution becomes 
eventually smooth [44] and converges to the homogeneous steady state. In [44] also an explicit 
smallness condition on u0 in L logL(�) and ∇ lnv0 in L2(�) has been found that ensures the 
global existence of classical solutions.

Solutions emanating from large data, however, have not been proven to be bounded and might 
blow up and cease to exist as classical solutions after a finite time, continuing only as general-
ized solutions in the sense of [43]. In higher-dimensional domains, even the existence of such 
solutions is unknown. Only in a radially symmetric setting “renormalized solutions” have been 
constructed [42].

In the present article, we aim to find solutions to (1) that are locally bounded and hence do 
not blow up in finite time. For this, we will rely on stronger growth of D, i.e. on the nonlinear 
diffusion we want to include. More precisely, we assume that with some m ≥ 1, which will be 
subject to further conditions, and δ > 0

D ∈ Cδ,m :=
{
d ∈ C1([0,∞));d(s) ≥ δsm−1 for all s ∈ [0,∞)

}
.

In a first step we will additionally require strict positivity of D, i.e.

D ∈ C+
δ,m :=

{
d ∈ C1([0,∞));d(s) ≥ δsm−1 for all s ∈ [0,∞) and d(0) > 0

}
and prove global existence of classical solutions to (1):

Theorem 1.1. Let N ≥ 2 and � ⊂ R
N be a bounded smooth domain. Then for every δ > 0 and 

m ≥ 1 satisfying

m > 1 + N
, (3)
4
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every D ∈ C+
δ,m and every pair (u0, v0) of initial data fulfilling

u0 ∈ Cα(�) for some α ∈ (0,1), v0 ∈ W 1,∞(�), u0 ≥ 0, v0 > 0 in � (4)

the initial boundary value problem

ut = ∇ · (D(u)∇u) − ∇ ·
(u

v
∇v

)
in � × (0, Tmax) (5a)

vt = �v − uv in � × (0, Tmax) (5b)

∂νu = 0 in ∂� × (0, Tmax) (5c)

∂νv = 0 in ∂� × (0, Tmax) (5d)

u(·,0) = u0 in � (5e)

v(·,0) = v0 in � (5f)

has a classical solution (u, v) ∈ (C0(� × [0, Tmax)) ∩ C2,1(� × (0, Tmax)))
2 which is global 

(i.e. Tmax = ∞).

Afterwards dropping the strict positivity assumption on D, we will use an approximation 
procedure and finally prove the existence of global weak solutions that are locally bounded:

Theorem 1.2. Let N ≥ 2 and � ⊂ R
N be a bounded smooth domain. Then for every δ > 0 and 

m > 1 + N
4 , every initial data

u0 ∈ Lmax{1,m−1}(�), v0 ∈ W 1,∞(�), u0 ≥ 0, v0 > 0 (6)

and every D ∈ Cδ,m, (5) has a global locally bounded weak solution (u, v) (in the sense of 
Definition 4.1), which in particular satisfies

‖u‖L∞(�×(0,T )) < ∞ for every T ∈ (0,∞).

We will devote Section 2 to the proof of local existence of solutions and an extensibility 
criterion. In the proof of boundedness that follows, we will sometimes use the system{

ut = ∇ · (D(u)∇u) − ∇ · (u∇w)

wt = �w − |∇w|2 + u
(7)

obtained from the transformation w = − log( v
‖v0‖L∞(�)

), which has also been used in [43,44]. We 
note that while the first equation seems more accessible in (7) due to the lack of any singularity, 
it is (5), where the second equation is more amenable to the derivation of estimates on ∇v.

The first stepping stone for the proof will be a spatio-temporal L2-bound for ∇w (Lemma 3.2), 
already giving some boundedness information for 

∫ t

0

∫
�

|∇um−1| and 
∫
�

um−1(·, t) for t > 0, 
which we can use to obtain bounds on 

∫ t

0

∫
�

|∇um−1| (Lemma 3.3) and thereby on 
∫ t

0 ‖u‖r
p

for certain p, r and t > 0 (Lemma 3.5). One consequence of such bounds is a spatio-temporal 
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Lq -bound on ∇v (see Lemma 3.7), derived with the help of maximal Sobolev regularity prop-
erties of the heat equation (cf. Lemma 3.6). Another is the (local-in-time) boundedness of 
w (Lemma 3.9). This is important, as it will enable us to transfer bounds from ∇v to ∇w

(Lemma 3.10).
Bounds on 

∫ t

0

∫
�

|∇w|q now in turn will translate into control over 
∫
�

up for some p

(Lemma 3.12). If p is sufficiently large, this entails L∞(� × (0, T ))-boundedness of |∇v| and 
|∇w| and thus finally of u (Lemma 3.11 and Lemma 2.1 v)). Thereby, the solution is not only 
locally bounded, but moreover exists globally, according to the extensibility criterion (15).

In Section 4 we rely on bounds already derived in the previous section to construct locally 
bounded weak solutions to (1) with functions D causing possibly degenerate diffusion.

Notation. Throughout the article we fix N ∈ N, N ≥ 2, and � ⊂ R
N as a bounded, smooth 

domain. When dealing with the solution to a differential equation, we will use Tmax to denote 
its maximal time of existence; in the case of (5) such Tmax is provided by Lemma 2.4. By ↪→
and 

cpt
↪→ we refer to continuous and compact embeddings of Banach spaces, respectively. We will 

sometimes write D(u) for the concatenation D ◦ u of functions. The number λ1 > 0 will always 
be the first positive eigenvalue of the Neumann Laplacian in �.

2. Local existence

We begin the proof by ensuring local existence of classical solutions in the non-degenerate 
case. As a first step let us, for easier reference, collect some basic results on existence of and 
estimates for solutions of certain parabolic PDEs.

Lemma 2.1.
i) For any T > 0, q > N and r > N and every M > 0 there are Ci > 0 and γ > 0

such that for all nonnegative functions v0 ∈ W 1,q (�) and u ∈ L∞((0, T ); Lr(�)) sat-
isfying ‖v0‖W 1,q (�) ≤ M and ‖u‖L∞((0,T );Lr(�)) ≤ M for the solution v ∈ V2 = {v ∈
L∞((0, T ); L2(�)); ∇v ∈ L2(� × (0, T ))} of

vt = �v − uv, ∂νv
∣∣
∂�

= 0, v(·,0) = v0 (8)

one has ‖v‖
C

γ,
γ
2 (�×[0,T ]) < Ci . If, moreover, u ∈ Cα, α

2 (� × (0, T ]) for some α ∈ (0, γ ), 

then v ∈ C0(� × [0, T ]) ∩ C2+α,1+ α
2 (� × (0, T ]). If u ∈ L∞(� × (0, T )), then v ∈ C1(� ×

(0, T ]).
ii) For any r∈(N, ∞] there is Cii = Cii(r) > 0 such that for any T > 0 and any q ∈ [2, ∞] for 

all nonnegative functions v0 ∈ W 1,q (�) and u ∈ Cα, α
2 (� × (0, T )) for some α ∈ (0, 1), the 

solution v ∈ Cγ,
γ
2 (� × [0, T ]) (for some γ ∈ (0, α)) of (8) satisfies

‖∇v(·, t)‖Lq(�) ≤ Cii ‖∇v0‖Lq(�) + Cii ‖v0‖L∞(�) ‖u‖L∞((0,T );Lr(�)) .

iii) For every T > 0, δ0 > 0, M > 0 and K > 0 there is Ciii > 0 such that for every u0∈L∞(�)

satisfying 0 ≤ u0 ≤ M and every g ∈ (
C0((� × (0, T ))

)N
fulfilling g · ν = 0 on ∂� and 

‖g‖L∞(�) ≤ K , and for all A ∈ L∞(� × (0, T )) with A > δ0 in � × (0, T ), the unique weak 
solution of
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ut = ∇ · (A∇u − g) in � × (0, T ), ∂νu
∣∣
∂�

= 0 in (0, T ), u(·,0) = u0 in �, (9)

satisfies

‖u‖L∞(�×(0,T )) ≤ Ciii and ‖∇u‖L2(�×(0,T )) ≤ Ciii . (10)

iv) For any T > 0, for any D0 > δ0 > 0, M > 0, K > 0 and α∈(0, 1) there are Civ > 0
and γ∈(0, 1) such that for every A ∈ L∞(� × (0, T )) fulfilling δ0 < A < D0 a.e. in 
� ×(0, T ), and for all g∈ (C0(� × (0, T ))

)N
with g ·ν = 0 on ∂� and ‖g‖L∞(�×(0,T )) ≤ M

and all u0 ∈ Cα(�) with ‖u0‖Cα(�) ≤ M , any solution u of (9) that obeys the estimate 
‖u‖L∞(�×(0,T )) ≤ K satisfies

‖u‖
C

γ,
γ
2 (�×[0,T ]) ≤ Civ. (11)

Moreover, if g∈Cβ,
β
2 (� × (0, T ]) for some β > 0, then u ∈ C2,1(� × (0, T ]).

v) For every m ≥ 1, δ > 0, K > 0, p0 ≥ 1, q1 > n + 2 and T ∈ (0, ∞] there is Cv > 0
such that for every D ∈ C1(� × [0, T ) × [0, ∞)) which obeys D ≥ 0, D(x, t, s) ≥ δsm−1

for all (x, t, s) ∈ � × (0, T ) × (0, ∞) and every f ∈ C0((0, T ); C0(�) ∩ C1(�)), with 
f · ν ≤ 0 on ∂� × (0, T ), satisfying ‖f ‖L∞((0,T );Lq1 (�)) ≤ K , for every nonnegative func-
tion u ∈ C0(� × [0, T )) ∩ C2,1(� × (0, T )) that satisfies ‖u‖L∞((0,T );Lp0 (�)) ≤ K and 
ut ≤ ∇ · (D(x, t, u)∇u) + ∇ · f (x, t) in � × (0, T ) and ∂νu

∣∣
∂�

≤ 0 on (0, T ), we have 
‖u(·, t)‖L∞(�) ≤ Cv for every t ∈ (0, T ).

Proof. i) According to [15, III.5.1], (8) has a unique weak solution v ∈ V2 in � ×(0, T ). The first 
part of the statement thus immediately results from [31, Thm. 1.3 and Remarks 1.3, 1.4], whereas 
the second is a consequence of a uniqueness statement [15, III.5.1] combined with the existence 
assertion for classical solutions in [15, IV.5.3] (applied to ζε(t)v(x, t) for some cutoff function 
ζε ∈ C∞

0 ([0, ∞)), ζε

∣∣
(0, ε

2 )
≡ 0, ζε

∣∣
(ε,∞)

≡ 1 for arbitrary ε > 0). The third part – actually, even 
Hölder-continuity of ∇v – is provided by [22, Thm. 1.1].

ii) Existence of a solution ensured as in the proof of i), we may rely on [30, Cor. 4.3.3] to rep-
resent v as mild solution via the variation of constants formula, and invoking [39, Lemma 1.3 iii)]
and [39, Lemma 1.3 ii)], we gain c1 > 0 and c2 > 0, respectively, such that with ρ := max {q, r}
and by Hölder’s inequality

‖∇v(·, t)‖Lq(�) ≤c1 ‖∇v0‖Lq(�)

+
t∫

0

c2|�| 1
q
− 1

ρ

(
1 + (t − s)

− 1
2 − N

2 ( 1
r
− 1

ρ
)
)
‖uv(·, s)‖Lr(�)e

−λ1(t−s)ds

≤ c1 ‖∇v0‖Lq(�) + c3 ‖v0‖L∞(�) ‖u‖L∞((0,T );Lr(�)) ,

where we have used that σ− 1
2 − N

2 ( 1
r
− 1

ρ
) ≤ 1 + σ− 1

2 − N
2r for all σ > 0 and all ρ∈[1, ∞] and set 

c3 := ∫∞
0 c2

(
2 + σ− 1

2 − N
2r

)
e−λ1σ dσ , which is finite because of r > N , and where we have taken 

into account that by comparison arguments 0 ≤ v(·, t) ≤ ‖v0‖L∞(�) in � for all t∈(0, T ).
iii) This is a combination of [23, Thm. 6.38] (estimate for ∇u), [23, Thm. 6.39] (existence 

and uniqueness) and [23, Thm. 6.40] (uniform boundedness).
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iv) The same theorems as in the proof of i) apply.
v) This is (part of) Lemma A.1 in [36]. �

Lemma 2.2. For every positive function D ∈ C0([0, ∞)), for every L > 0 and α ∈ (0, 1) there 
is T > 0 such that for every u0 ∈ Cα(�) satisfying ‖u0‖Cα(�) ≤ L and every v0 ∈ W 1,∞(�)

which satisfies v0 > 1
L

in � and fulfils ‖v0‖W 1,∞(�) ≤ L there is a pair of functions (u, v) ∈
C0(� × [0, T ])∩C2,1(� × (0, T ]) solving (5) in � × (0, T ).

Proof. We let R := L + 1 ≥ ‖u0‖L∞(�) + 1. For the choice of r := ∞ we obtain c1 := Cii > 0
with properties as described in Lemma 2.1 ii), and thereupon invoking Lemma 2.1 iii) for pa-
rameters T = 1, δ0 = infs>0 D(s), M = R, K = c1R(1 + R)L2eR , we are given c2 := Ciii > 0
as in (10). An application of Lemma 2.1 iv) for T = 1, δ0 = infs>0 D(s), D0 = sup0<s<R D(s), 
M = max

{
c1R(1 + R)L2eR,L

}
and K = c2 provides us with c3 := Civ > 0 and γ ∈ (0, 1) as 

in (11). With these, we choose T ∈(0, 1) such that ‖u0‖L∞(�) + c3T
γ
2 < R and introduce

S :=
{
û ∈ C0(� × [0, T ]);0 ≤ û ≤ R,u(·,0) = u0,‖û‖

C
γ,

γ
2 (�×[0,T ]) ≤ c3

}
⊂ C0(� × [0, T ]).

(12)

For any ̂u ∈ S we define ̂u(t) := u(T ) for t ∈ (T , 1] and note that the solution v of

vt = �v − ûv in � × (0,1), ∂νv
∣∣
∂�

= 0, v(·,0) = v0 in �, (13)

satisfies

‖v0‖L∞(�) ≥ v(·, t) ≥ (infv0) e−R ≥ 1

L
e−R (14)

in � for all t ∈ [0, 1] and, by definition of c1, ‖∇v(·, t)‖L∞(�) ≤ c1(1 + R) ‖v0‖W 1,∞(�) ≤
c1(1 + R)L.

We let u be the solution of

ut = ∇ ·
(

D(̂u)∇u − û

v
∇v

)
in � × (0,1), ∂νu

∣∣
∂�

= 0, u(·,0) = u0 in �.

Then by definition of c2 and c3 (with g = û
v
∇v and A = D ◦ û in (9)), ‖u‖L∞(�×(0,1)) ≤ c2

and ‖u‖
C

γ,
γ
2 (�×[0,1]) ≤ c3. Hence if we define �(̂u) := u

∣∣
�×(0,T )

, we have ‖�(̂u)(t)‖L∞(�) ≤
‖u0‖L∞(�) + c3t

γ
2 ≤ R for every t ∈ (0, T ) and every ̂u ∈ S, and thus � is a function mapping S

into itself, where S is a closed convex set in C0(�×[0, T ]). Moreover, � : S → S is continuous: 
We let u ∈ S and ̂u k ∈ S for all k ∈N such that ̂u k → u in C0(�×[0, T ]). Then, with respect to 
‖·‖L∞(�×(0,T )) and with respect to the weak-*-topology of L∞((0, T ); W 1,∞(�)), the solutions 
vk of (13) with ̂u replaced by ̂u k converge to v solving (13) with u instead of ̂u: Assuming on the 
contrary that there were a sequence (kl)l∈N such that for each subsequence (klm)m∈N thereof the 
sequence (vklm )m∈N did not converge in the indicated topologies, from the uniform bounds on ∥∥vkl

∥∥
C

γ,
γ
2 (�×[0,T ]) and on 

∥∥∇vkl
∥∥

L∞((0,T );L∞(�))
asserted by Lemma 2.1 i) and Lemma 2.1 ii), 

respectively, we could conclude the existence of some subsequence (vkln )n∈N being uniformly 
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convergent in � × [0, T ] and weakly-∗-convergent in L∞((0, T ); W 1,∞(�)). By passing to the 
limit in the weak formulation in the equations of the form (13) satisfied by vkl , the limit can easily 
be seen to coincide with the unique weak solution v of (13) with u replacing ̂u, contradicting the 

choice of (vkl )l∈N. We observe that hence and by (14), uk

vk ∇vk ∗
⇀ u

v
∇v in L∞((0, T ); L∞(�)). 

Similarly taking into account bounds on 
∥∥�(̂u k)

∥∥
C

γ,
γ
2 (�×[0,T ]) and 

∥∥∇�(̂u k)
∥∥

L2(�×(0,T ))
as 

obtained from Lemma 2.1 iv) and 2.1 iii) and again employing the weak formulation of the 
equations defining �(̂u k) and uniqueness of the solution �(u) = u of ut = ∇ ·(D(u)∇u − u

v
∇v), 

∂νu
∣∣
∂�

= 0, u(·, 0) = u0, we finally see that �(̂u k) → �(u) in C0(� × [0, T ]).
We note that S⊂C0(�×[0, T ]) is a closed bounded convex set and �(S) is relatively compact 

in C0(� × [0, T ]), owing to the uniform Hölder bound c3 and Arzelà–Ascoli’s theorem, so that 
we can apply Schauder’s fixed point theorem to find u ∈ S such that �(u) = u. Due to the 
regularity assertions in Lemma 2.1 iv) even u ∈ C2,1(�×(0, T ]); also the corresponding solution 
v of the second equation belongs to this space by 2.1 i). �
Lemma 2.3. Let T > 0. If on � × (0, T ) there is a solution (u, v) to (5) such that

sup
t∈(0,T )

‖u(·, t)‖L∞(�) < ∞,

then there is T̃ > T such that there is a solution to (5) in � × (0, ̃T ) which on � × (0, T )

coincides with (u, v).

Proof. Successive application of comparison arguments in (5b) and of Lemma 2.1 parts ii), iv) 
and i) show the existence of α > 0 and M > 0 such that

inf
�×(0,T )

v >
1

M
, ‖v‖L∞((0,T );W 1,∞(�)) ≤ M, ‖u‖

C
α, α

2 (�×[0,T ]) ≤ M, ‖v‖
C

α, α
2 (�×[0,T ]) ≤ M.

Due to the uniform continuity of u and v,

ũ0(x) := lim
t↗T

u(x, t), ṽ0(x) := lim
t↗T

v(x, t), x ∈ �,

are well-defined and satisfy M ≥ ṽ0 ≥ 1
M

in � as well as ‖ũ0‖Cα(�) ≤ M .
Picking a sequence (tk)k∈N ↗ T and referring to ‖v‖L∞((0,T );W 1,∞(�)) ≤ M , we may con-

clude the existence of a subsequence (tkl
)l∈N such that ∇v(·, tkl

) 
∗
⇀ ∇ṽ0 in L∞(�) as l → ∞, 

and thus infer ‖̃v0‖W 1,∞(�) ≤ M . According to Lemma 2.2, we can find τ > 0 and (̃u, ̃v) ∈(
C0(� × [0, τ ]) ∩ C2,1(� × (0, τ ]))2

solving

ũt = ∇ ·
(

D(̃u)∇ũ − ũ

ṽ
∇ṽ

)
, ṽt = �ṽ − ũṽ in � × (0, τ ),

∂νũ
∣∣
∂�

= ∂νṽ
∣∣
∂�

= 0, ũ(·,0) = ũ0, ṽ(·,0) = ṽ0.

Letting
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(u, v)(·, t) :=
{

(u, v)(·, t), t < T ,

(̃u, ṽ)(·, t − T ), t ∈ [T ,T + τ),

we obtain a weak solution of (5) in � × (0, T + τ), which by Lemma 2.1 parts iv) and i) is 
classical. �
Lemma 2.4. Let α ∈ (0, 1), m ≥ 1, δ > 0. For every D ∈ Cδ,m, u0 ∈ Cα(�), v0 ∈ W 1,∞(�), 
u0 ≥ 0, v0 > 0 in �, there is Tmax > 0 and (u, v) ∈ (C0(� × [0, Tmax)) ∩ C2,1(� × (0, Tmax)))

2

such that (u, v) solves (5) and

Tmax = ∞ or lim sup
t↗Tmax

‖u(·, t)‖L∞(�) = ∞. (15)

Moreover, u ≥ 0 and 0 < v ≤ ‖v0‖L∞(�) throughout � × (0, Tmax).

Proof. We let u0 ∈ Cα(�) and v0 ∈ W 1,∞(�), define

S =
{
(t, u, v); t ∈ (0,∞), u, v ∈ C0(� × [0, Tmax)) ∩ C2,1(� × (0, Tmax)) (u, v) solves (5)

}
and introduce the order relation � given by

(t1, u1, v1) � (t2, u2, v2) : ⇐⇒ t1 ≤ t2, u2|(0,t1) = u1, v2|(0,t1) = v1.

Every totally ordered set MI = {(ti , ui, vi); i ∈ I } with arbitrary index set I has an upper bound 
(supi∈I ti , u, v), where u(τ) = ui(τ ) if τ ∈ (0, ti ) and v is defined analogously. (This yields well-
defined functions, since ui1(τ ) = ui2(τ ) if τ ∈ (0, ti1) ∩ (0, ti2), because MI is totally ordered.) 
Moreover, S is not empty, according to Lemma 2.2. By Zorn’s lemma there is some maxi-
mal element (Tmax, u, v) ∈ S . Assume that lim supt↗Tmax

‖u(·, t)‖L∞(�) < ∞. Then Lemma 2.3
immediately yields T̃ > T such that (T̃ , ̃u, ̃v) � (Tmax, u, v), contradicting the maximality of 
(Tmax, u, v). �
3. The nondegenerate case. Proof of Theorem 1.1

This section is devoted to the derivation of estimates for the solutions, so as to finally obtain 
their global existence by means of the extensibility criterion (15).

For some manipulations in (5a) it would be more convenient to deal with a nonsingular chemo-
taxis term of the form ∇ · (u∇w) instead of ∇ · ( u

v
∇v). For this purpose, we employ the following 

transformation and, given a solution (u, v) ∈ (C0(� × [0, Tmax)) ∩ C2,1(� × (0, Tmax)))
2 of (5)

for initial data (u0, v0) as in (4), let

w := − log
v

‖v0‖L∞(�)

in � × [0, Tmax). (16)

Then w ≥ 0 in � × (0, Tmax) and (u, w) ∈ (C0(� × [0, Tmax)) ∩ C2,1(� × (0, Tmax)))
2 solves
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ut = ∇ · (D(u)∇u + u∇w) in � × (0, Tmax) (17a)

wt = �w − |∇w|2 + u in � × (0, Tmax) (17b)

∂νu = 0 = ∂νw in ∂� × (0, Tmax) (17c)

u(·,0) = u0, w(·,0) = w0 := − log
v0

‖v0‖L∞(�)

in �, (17d)

where (u0, w0) satisfy

u0 ≥ 0, w0 ≥ 0, w0 ∈ W 1,∞(�), u0 ∈ Cα(�) for some α ∈ (0,1). (18)

Evidently, given ‖v0‖L∞(�) every solution (u, w) to (17) yields a solution to (5) via v :=
‖v0‖L∞(�) e

−w .
We will proceed in several steps, the first being the following simple observation that the 

bacterial mass is conserved throughout evolution:

Lemma 3.1. Let T > 0, δ > 0, m ∈ R, D ∈ Cδ,m and let u ∈ C0(� × [0, T )) ∩ C2,1(� × (0, T ))

solve (5c), (5a) with some v ∈ C2,1(�× (0, T )) or (17a), (17c) with some w ∈ C2,1(�× (0, T )). 
Then, with u0 := u(·, 0), ∫

�

u(·, t) =
∫
�

u0 for every t ∈ (0, T ).

Proof. This is an immediate consequence of (5a) or (17a), obtained upon integration over �. �
In (17), a spatio-temporal L2-bound for ∇w can be inferred rather directly:

Lemma 3.2. Let m ∈ R, δ > 0, T > 0 and (u, w) ∈ (C0(� × [0, T )) ∩ C2,1(� × (0, T )))2 be a 
solution to (17) for any D ∈ Cδ,m. Then, with u0 := u(·, 0), w0 := w(·, 0),

t∫
0

∫
�

|∇w|2 ≤
∫
�

w0 + t

∫
�

u0 for every t ∈ (0, T ).

Proof. In order to see this, it is sufficient to integrate the second equation of (17) and take into 
account Lemma 3.1. �

This bound can be transformed into a first information on derivatives of u:

Lemma 3.3. Let m > 1, δ > 0. For any K > 0 there is C > 0 such that for any D ∈ Cδ,m any so-
lution (u, w) of (17) emanating from initial data (u0, w0) as in (18) with ‖u0‖Lmax{1,m−1}(�) ≤ K , 
‖w0‖L1(�) ≤ K obeys the estimates

t∫ ∫
u2m−4|∇u|2 ≤ C(1 + t) for all t ∈ (0, Tmax)
0 �
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and

t∫
0

∫
�

D(u)um−3|∇u|2 ≤ C(1 + t) for all t ∈ (0, Tmax)

as well as ∫
�

um−1(·, t) ≤ C(1 + t) for all t ∈ (0, Tmax). (19)

Proof. Due to (17a), on (0, Tmax) we have

d

dt

∫
�

um−1 = (m − 1)

∫
�

um−2∇ · (D(u)∇u + u∇w)

= (m − 1)(2 − m)

∫
�

D(u)um−3|∇u|2 + (m − 1)(2 − m)

∫
�

um−2∇u · ∇w. (20)

We note that by Young’s inequality

∣∣∣∣∣∣
∫
�

um−2∇u · ∇w

∣∣∣∣∣∣≤ δ

3

∫
�

u2m−4|∇u|2 + 3

4δ

∫
�

|∇w|2 on (0, Tmax). (21)

The sign of (m − 1)(2 − m) in (20) depends on the size of m and we therefore distinguish the 
following cases:

If m ∈ (1, 2), (20) together with (21) and Lemma 3.2 yields

1

3

t∫
0

∫
�

D(u)um−3|∇u|2 + δ

3

t∫
0

∫
�

u2m−4|∇u|2

≤ 1

(m − 1)(2 − m)

∫
�

um−1(·, t) − 1

(m − 1)(2 − m)

∫
�

u0 + 3

4δ

t∫
0

∫
�

|∇w|2

≤ 1

(m − 1)(2 − m)
|�|m−2

m−1

⎛⎝∫
�

u0

⎞⎠
1

m−1

+ 3

4δ

⎛⎝∫
�

w0 + t

∫
�

u0

⎞⎠ for any t ∈ (0, Tmax).

(22)

If m > 2, (20) and (21) can be combined to give
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1

(m − 1)(m − 2)

∫
�

um−1(·, t) − 1

(m − 1)(m − 2)

∫
�

um−1
0 + 1

3

t∫
0

∫
�

D(u)um−3|∇u|2

+ δ

3

t∫
0

∫
�

u2m−4|∇u|2 ≤ 3

4δ

t∫
0

∫
�

|∇w|2 for any t ∈ (0, Tmax),

which allows for a similarly obvious definition of C as (22). This inequality also entails (19) for 
m > 2, the only case that does not immediately result from Lemma 3.1.

If m = 2, apparently the consideration of d
dt

∫
�

um−1 = d
dt

∫
�

u = 0 does not help in achieving 
an estimate for 

∫ t

0

∫
�

u2m−4|∇u|2 = ∫ t

0

∫
�

|∇u|2. From the analogously obtained

d

dt

∫
�

u logu + 1

3

∫
�

D(u)

u
|∇u|2 + 2δ

3

∫
�

|∇u|2 ≤ δ

3

∫
�

|∇u|2 + 3

4δ

∫
�

|∇w|2 on (0, Tmax),

however, we can derive the same form of estimates as in the other cases. �
For convenience let us recall those special cases of the Gagliardo–Nirenberg inequality we 

are going to use in the following:

Lemma 3.4.
i) Let 0 < q ≤ p ≤ 2N

N−2 (or 0 < q ≤ p < ∞ if N = 2) and let s > 0 and γ > 0. Then there is 
c > 0 such that

‖u‖γ

Lp(�) ≤ c ‖∇u‖aγ

L2(�)
‖u‖(1−a)γ

Lq(�) + c ‖u‖γ

Ls(�) for all u ∈ W 1,2(�) ∩ Lq(�) ∩ Ls(�),

where

a =
1
q

− 1
p

1
q

+ 1
N

− 1
2

.

ii) Let p, q ∈ (1, ∞) be such that p(q − N) = q(2p − N)a for some a ∈ [ 1
2 , 1). Then there is 

c > 0 such that

‖∇v‖q

Lq(�) ≤ c ‖�v‖qa

Lp(�)
‖v‖q(1−a)

L∞(�) + c ‖v‖q

L∞(�)

for all v ∈ W 2,p(�) ∩ W 1,q(�) ∩ L∞(�) with ∂νv = 0 on ∂�.

Proof. The Gagliardo–Nirenberg inequality can be found in [29, p. 125], [5, Thm. 10.1] or in 
[21, Lemma 2.3] (where also the case of p, q < 1 in i) is covered); replacing D2v by �v in the 
standard formulation of ii) is possible by, e.g., [5, Thm. 19.1]. �

Aided by the Gagliardo–Nirenberg inequality, in the next step, as consequence of the esti-
mates from Lemma 3.3 we shall acquire the bound (23), which will be featured as condition in 
Lemma 3.7 and Lemma 3.8, and can be seen as an important ingredient of the proof of Theo-
rem 1.1.
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Lemma 3.5. Let K > 0, T ∈ (0, ∞), δ > 0 and m > 1. If either

i) m ≤ 2, r > 1, p ≥ 1 satisfy p ≤ 2N
N−2 (m − 1) and r(1 − 1

p
) ≤ 2m − 3 + 2

N
or

ii) m ≥ 2, r > 1 and p ∈ [m − 1, 2N
N−2 (m − 1)] are such that ( 1

m−1 − 1
p
)r ≤ 1 + 2

N
,

then there is C > 0 such that whenever (u, w) ∈ (C0(� × [0, T )) ∩ C2,1(� × (0, T )))2 solves 
(17) for some D ∈ Cδ,m and for initial data (u0, w0) with (18) and ‖u0‖Lmax{1,m−1}(�) ≤ K , 
‖w0‖L1(�) ≤ K , we have

t∫
0

‖u‖r
Lp(�) < C(1 + t r+1) for all t ∈ (0, T ). (23)

Proof. i) Due to m > 1, the inequality p ≤ 2N
N−2 (m − 1) is equivalent to p

m−1 ≤ 2N
N−2 , and p ≥ 1

ensures p
m−1 ≥ 1

m−1 . Thus, the Gagliardo–Nirenberg inequality (Lemma 3.4 i)) yields c1 > 0
such that with

a := m − 1 − m−1
p

m − 1 + 1
N

− 1
2

,

and hence r
m−1a ≤ 2, for all t ∈ (0, Tmax) we obtain

t∫
0

‖u‖r
Lp(�) =

t∫
0

∥∥∥um−1
∥∥∥ r

m−1

L
p

m−1 (�)

≤ c1

t∫
0

∥∥∥∇um−1
∥∥∥ r

m−1 a

L2(�)

∥∥∥um−1
∥∥∥ r

m−1 (1−a)

L
1

m−1 (�)
+ c1

t∫
0

∥∥∥um−1
∥∥∥ r

m−1

L
1

m−1 (�)

≤ c1

⎛⎝∫
�

u0

⎞⎠
r

m−1 (1−a) t∫
0

(
1 +

∥∥∥∇um−1
∥∥∥2

L2(�)

)
+ c1

t∫
0

⎛⎝∫
�

u0

⎞⎠
r

m−1

,

where we have used Lemma 3.1, and can conclude the proof with applications of Lemma 3.3 and 
Young’s inequality.

ii) From Lemma 3.3 we obtain c2 > 0 such that

∫
�

um−1(·, t) ≤ c2(1 + t) and

t∫
0

∫
�

|∇um−1|2 ≤ c2(1 + t) for all t ∈ (0, Tmax).

The fact that p ∈ [m − 1, 2N
N−2 (m − 1)] entails both p

m−1 ≥ 1 and p
m−1 ≤ 2N

N−2 . Therefore, with

a := 1 − m−1
p

1 + 1 − 1
,

N 2
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Lemma 3.4 i) produces c3 > 0 such that for all t ∈ (0, Tmax)

t∫
0

‖u‖r
Lp(�) =

t∫
0

∥∥∥um−1
∥∥∥ r

m−1

L
p

m−1 (�)

≤ c3

t∫
0

∥∥∥∇um−1
∥∥∥ r

m−1 a

L2(�)

∥∥∥um−1
∥∥∥ r(1−a)

m−1

L1(�)
+ c3

t∫
0

∥∥∥um−1
∥∥∥ r

m−1

L
1

m−1 (�)

≤ c2 (c3(1 + t))
r(1−a)
m−1

t∫
0

(∥∥∥∇um−1
∥∥∥2

L2(�)
+ 1

)
+ c3 ‖u0‖r

L1(�)
t ≤ c4 + c5t

r+1,

where we have used that ra
m−1 ≤ 2 and, aided by Lemma 3.1 and the trivial inequality r 1−a

m−1 ≤ r , 
chosen suitable positive constants c4 and c5. �

As preparation for exploiting (23) in the second equation of (5), we recall

Lemma 3.6. Let p, q ∈ (1, ∞). Then for every T > 0 there exists C > 0 such that for every 
z ∈ Lq((0, T ); Lp(�)) the unique solution of

vt = �v − z in � × (0, T ), ∂νv
∣∣
∂�

= 0, v(·,0) = 0

satisfies

T∫
0

‖�v‖q

Lp(�) ≤ C

T∫
0

‖z‖q

Lp(�) .

Proof. We obtain this lemma as straightforward consequence of well-known maximal regularity 
assertions, cf. [7,8]. �

Lemma 3.6 empowers us to develop (23) into useful knowledge about the gradient of v:

Lemma 3.7. Let p ≥ N
2 , r ≥ p, (2 − N

p
)r > 1 − N , and{

q ∈ (1,N + (2 − N
p

)r], if p ≥ N

q ∈ (1,N + (2 − N
p

)r] ∩ (1,
Np

N−p
), if N

2 < p < N.

Then for every K > 0 and T > 0 there is C > 0 such that for every v0 ∈ W 1,∞(�) with 
‖v0‖W 1,∞(�) ≤ K , and every u ∈ Lr((0, T ); Lp(�)) for which

T∫
‖u‖r

Lp(�) < K (24)
0
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is satisfied, the solution v of (5b) fulfils

T∫
0

∫
�

|∇v|q < C. (25)

Proof. In order to prepare the application of Lemma 3.6, we decompose v(·, t) = ṽ(·, t) + et�v0
in � × (0, T ), where ̃v solves

ṽt = �ṽ − uv, ṽ(·,0) = 0, ∂ν ṽ
∣∣
∂�

= 0.

By nonnegativity of v0 and uv, we clearly have 0 ≤ ṽ ≤ v ≤ K in � × (0, T ).
We let q ≤ N + (2 − N

p
)r and without loss of generality assume q ≥ 2p (which is possible 

since 2p = N +2p −N ≤ N + (2p −N) r
p

= N + (2 − N
p

)r and also 2p <
Np

N−p
if p ∈ (N

2 , N)). 

We note that q ≤ N + (2 − N
p

)r implies that r ≥ q−N

2− N
p

= (q−N)p
2p−N

and hence with

a := p(q − N)

q(2p − N)

we have aq ≤ r . Moreover, q ≥ 2p ensures that pq − Np ≥ pq − Nq
2 = 1

2q(2p − N) and 
thus a ≥ 1

2 , and, furthermore, (p − N)q > −Np, which is obvious for p > N and holds by 
assumption on q if p < N , entails 2pq − Nq > pq − Np and hence a < 1. Accordingly, from 
[39, Lemma 1.3 iii)] and the Gagliardo–Nirenberg inequality (Lemma 3.4 ii)) we obtain c1 > 0, 
c2 > 0, respectively, such that we have

T∫
0

∫
�

|∇v|q ≤ 2q

T∫
0

∫
�

|∇et�v0|q + 2q

T∫
0

∫
�

|∇ṽ|q

≤ c1T ‖∇v0‖q

Lq(�) + 2q

T∫
0

‖∇ṽ‖q

Lq(�)

≤ c1T |�| 1
q ‖∇v0‖L∞(�) + c2

T∫
0

‖�ṽ‖aq

Lp(�)
‖̃v‖(1−a)q

L∞(�) + c2

T∫
0

‖̃v‖q

L∞(�) .

Since aq < r , due to Young’s inequality and boundedness of ̃v this estimate can be turned into

T∫
0

∫
�

|∇v|q ≤ c3 + c4

T∫
0

‖�ṽ‖r
Lp(�) ,

for some c3 > 0, c4 > 0, where we may invoke the maximal Sobolev result of Lemma 3.6 for 
z = uv and hence 

∫ T ‖z‖r
p ≤ Kr

∫ T ‖u‖r
p to conclude (25) from (24). �
0 L (�) 0 L (�)
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Another consequence of (23) is (local-in-time) boundedness of w:

Lemma 3.8. Assume that r ∈ (1, ∞), p ∈ [1, ∞) are such that Nr
2p(r−1)

< 1. Then for every K > 0

there is C > 0 such that whenever, for some T > 0, w ∈ C0(�×[0, T )) ∩C2,1(�×(0, T )) solves 
(17b), (17c), (17d) for some w0 as in (18) and some u ∈ C0(�×[0, T )) ∩C2,1(�× (0, T )) such 
that ‖w0‖L∞(�) ≤ K , 1

|�|
∫
�

u(·, t) ≤ K on (0, T ) and moreover

T∫
0

‖u‖r
Lp(�) < K,

then

w(x, t) ≤ C(1 + t) for all (x, t) ∈ � × (0, T ).

Proof. By nonpositivity of −|∇w|2, we have that 0 ≤ w ≤ w̃, where w̃ solves

w̃t = �w̃ + u, ∂νw̃
∣∣
∂�

= 0, w̃(·,0) = w0.

For this function we can estimate

‖w̃(·, t)‖L∞(�) ≤ ‖w0‖L∞(�) +
t∫

0

∥∥∥e(t−s)� (u(·, s) − u)

∥∥∥
L∞(�)

ds + u · t for all t ∈ (0, T ),

(26)

where u = 1
|�|

∫
�

u(·, t) ≤ K . For assessing the integral in (26) we invoke [39, Lemma 1.3 i)] to 
obtain c1 > 0 such that

t∫
0

∥∥∥e(t−s)� (u(·, s) − u)

∥∥∥
L∞(�)

ds

≤ c1

t∫
0

(
1 + (t − s)

− N
2p

)
e−λ1(t−s) ‖u(·, s) − u‖Lp(�)

(27)

≤ c1

t∫
0

(
1 + (t − s)

− N
2p

)
e−λ1(t−s) ‖u(·, s)‖Lp(�) ds + c1K|�| 1

p

∞∫
0

(
1 + σ

− N
2p

)
e−λ1σ dσ

≤ c1

∞∫
0

(
1 + σ

− N
2p

) r
r−1

e−λ1σ
r

r−1 dσ + c1

t∫
0

‖u(·, s)‖r
Lp(�) + c1K|�| 1

p

∞∫
0

(
1 + σ

− N
2p

)
e−λ1σ dσ

for all t ∈ (0, T ). Collecting the constants in (26) and (27), we see that for all (x, t) ∈ � × (0, T )

w(x, t) ≤ ‖w̃(·, t)‖L∞(�) ≤ C(1 + t),
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where

C := K + c1K + c1K|�| 1
p

∞∫
0

(
1 + σ

− N
2p

)
e−λ1σ dσ + k1

∞∫
0

(
1 + σ

− N
2p

) r
r−1

e−λ1σ
r

r−1 dσ,

which is finite due to Nr
2p(r−1)

< 1 (and its consequence N
2p

< 1). �
If we can find parameters that allow for an application of Lemma 3.5 and Lemma 3.8 at the 

same time, we can conclude boundedness of w. This is the goal we pursue in the following 
lemma:

Lemma 3.9. Let

m > 1 + N

4
(28)

and δ > 0. Then for all T ∈ (0, ∞) there is C > 0 such that for every D ∈ Cδ,m and every (u0, w0)

as in (18) with ‖u0‖Lmax{1,m−1}(�) ≤ K , ‖w0‖L∞(�) ≤ K , any solution (u, w) ∈ (C0(�×[0, T )) ∩
C2,1(� × (0, T )))2 of (17) satisfies

w(x, t) ≤ C for all x ∈ � and all t ∈ (0, T ).

Proof. Let us first consider the case m ∈ (2 − 1
N

, 2] (that is of interest only if N < 4, because m
is supposed to satisfy m > 1 + N

4 ) and observe that by (28), we have

m >

{
3
2 , if N = 2
7
4 , if N = 3

}
= 5

4
− 1

2N
+ N

8
+
√(

5

4
− 1

2N
+ N

8

)2

− 5

4
+ 1

N
− 3

8
N.

Therefore, we see that

4m2 − 10m + 4

N
m − Nm + 5 − 4

N
+ 3

2
N > 0

and hence

(N − 2)

(
m − 3

2

)
= Nm − 3

2
N − 2m + 3 < 4m2 − 8m + 4

N
m − 4m + 8 − 4

N

= 2(m − 1)

(
2m − 4 + 2

N

)
,

so that

N(m − 3
2 )

2m − 4 + 2
<

2N

N − 2
(m − 1).
N
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Since moreover 2N
N−2 (m − 1) > 1, it is possible to choose p ≥ 1 such that p ∈

(
N(m− 3

2 )

2m−4+ 2
N

,

2N
N−2 (m − 1)

)
. With this choice of p we let

r := 2m − 3 + 2
N

1 − 1
p

and note that 2m − 3 + 2
N

> 4 − 2
N

− 3 + 2
N

= 1 > 1 − 1
p

entails r > 1. Hence Lemma 3.5 i) is 
applicable. Moreover,

2p

N

(
1 − 1

r

)
= 2p

N

(
1 − 1 − 1

p

2m − 3 + 2
N

)

= 2

N
· p(2m − 3 + 2

N
) − p + 1

2m − 3 + 2
N

>
2

N
· N(m − 3

2 ) + 1

2(m − 3
2 + 1

N
)

= 1

and we can additionally invoke Lemma 3.8 so as to obtain the desired boundedness of w on 
� × (0, T ).

If m ≥ 2 (and m > 1 + N
4 ), we note that

N2(m − 1)

2N(m − 1) + 4(m − 1) − 2N
<

N2(m − 1)

2N N
4 + 4N

4 − 2N
= N2(m − 1)

N2

2 − N
= 2N

N − 2
(m − 1).

Since m ≥ 2,

1 + 2
N

m − 1
≤ 1 + 2

N
< 1 + 4

N
+ 4

N2
,

and hence

1

m − 1
− 1 − 2

N
<

2

N
+ 4

N2
− 2

N(m − 1)
= 2N(m − 1) + 4(m − 1) − 2N

N2(m − 1)
.

Therefore we can pick p ∈
(

N2(m−1)
2N(m−1)+4(m−1)−2N

, 2N
N−2 (m − 1)

)
such that 1

p
> 1

m−1 − 1 − 2
N

and p > m − 1, and we let r := 1+ 2
N

1
m−1 − 1

p

. Then r > 1 and, apparently, ( 1
m−1 − 1

p
)r ≤ 1 + 2

N
, 

warranting applicability of Lemma 3.5. Moreover, p >
N2(m−1)

2N(m−1)+4(m−1)−2N
entails 1

p
< 2

N
+(

2
N

)2 − 2
N(m−1)

and thus N
2p

(1 + 2
N

) = N
2p

+ 1
p

< 1 + 2
N

− 1
m−1 + 1

p
and hence, finally,

N

2p
< 1 −

1
m−1 − 1

p

1 + 2
N

= 1 − 1

r
,

which permits us to employ Lemma 3.8 and conclude. �
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Lemma 3.10. For every K > 0 and every q ∈ (0, ∞] there is C > 0 such that for all T > 0 and 
all v ∈ C0(� × [0, T )) ∩ C2,1(� × (0, T ))

‖v0‖L∞(�) ≥ 1

K
, w ≤ K in � × (0, T ), and ‖∇v‖Lq(�×(0,T )) ≤ K

implies

‖∇w‖Lq(�×(0,T )) ≤ C

Proof. Since w ≤ K , we have v = ‖v0‖L∞(�) e
−w ≥ ‖v0‖L∞(�) e

−K , and immediately obtain 
1
v

≤ ‖v0‖−1
L∞(�) e

K ≤ KeK in � × (0, T ). Thus

‖∇w‖Lq(�×(0,t)) ≤
∥∥∥∥1

v
∇v

∥∥∥∥
Lq(�×(0,t))

≤ KeK ‖∇v‖Lq(�×(0,t)) ≤ K2eK =: C. �
Lemma 3.11. Let δ > 0, m ≥ 1, q > 2 and p > 1. Then for every K > 0 and T > 0 there is 
C > 0 such that the following holds: If q ≥ N and

m ≤ 2, p ≥ m − 2

q
, p ≤ (q − 1)(m − 1) + q − 2

N
, (29)

or m ≥ 2, p ≥ 2

(
1 − 1

q

)
(m − 1), p ≤ (m − 1)

(
q

2
+ (q − 2)(N + 2)

2N

)
, (30)

then for every function w ∈ C0(� × [0, T )) ∩ C2,1(� × (0, T )) with

t∫
0

∫
�

|∇w|q ≤ K for all t ∈ (0, T ),

any solution u ∈ C0(� × [0, T )) ∩ C2,1(� × (0, T )) of (17a), (17c), (17d) with
‖u0‖Lmax{1,m−1}(�) ≤ K and some D ∈ Cδ,m fulfils∫

�

up(·, t) ≤ C for all t ∈ (0, T ).

Proof. Either of (29) and (30) implies p ≥ m − 1. Moreover,

N − 2

2N
≤ q − 2

2q
· p + m − 1

p − m + 1
. (31)

Let us first consider the case m ≤ 2. Then p ≥ m − 2
q

implies p − m + 1 ≥ q−2
q

and hence

2 ≤ 2q · p − m + 1
. (32)
m + p − 1 q − 2 p + m − 1
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We now let

a :=
m+p−1

2 − q−2
2q

· p+m−1
p−m+1

m+p−1
2 + 1

N
− 1

2

and observe that

a · 2q

q − 2
· p − m + 1

m + p − 1
≤ 2, (33)

because p ≤ (q − 1)(m − 1) + q−2
N

implies that q
q−2p −p = (

q
q−2 − 1)p = 2

q−2p ≤ 2(q−1)
q−2 (m −

1) + 2
N

= (1 + q
q−2 )(m − 1) + 2

N
= m − 1 + q

q−2 (m − 1) + 2
N

, that is, q
q−2 (p − m + 1) ≤

m + p − 1 + 2
N

and hence q
q−2 (p − m + 1) − 1 ≤ (m + p − 1) + 2

N
− 1, which leads to

a · 2q

q − 2
· p − m + 1

m + p − 1
=

m+p−1
2 − q−2

2q
p+m−1
p−m+1

m+p−1
2 + 1

N
− 1

2

· 2q

q − 2
· p − m + 1

m + p − 1

=
p−m+1

2 · 2q
q−2 − 1

1
2 ((m + p − 1) + 2

N
− 1)

≤ 2.

From Lemma 3.1 we obtain c1 > 0 such that∥∥∥um+p−1
2 (·, t)

∥∥∥
L

2
m+p−1 (�)

= c1 for all t ∈ (0, T ).

Due to (31) and (32) we can apply the Gagliardo–Nirenberg inequality in the form of 
Lemma 3.4 i) to obtain c2 > 0 such that∫
�

u
(p+1−m)

q
q−2 =

∫
�

u
m+p−1

2 (
2q

q−2 · p−m+1
m+p−1 )

=
∥∥∥um+p−1

2

∥∥∥ 2q
q−2 · p−m+1

m+p−1

L
2q

q−2 · p−m+1
m+p−1 (�)

≤ c2

∥∥∥∇u
m+p−1

2

∥∥∥a· 2q
q−2 · p−m+1

m+p−1

L2(�)

∥∥∥um+p−1
2

∥∥∥(1−a)· 2q
q−2 · p−m+1

m+p−1

L
2

m+p−1 (�)
+ c2

∥∥∥um+p−1
2

∥∥∥ 2q
q−2 · p−m+1

m+p−1

L
2

m+p−1 (�)

= c2c
(1−a)· 2q

q−2 · p−m+1
m+p−1

1

∥∥∥∇u
m+p−1

2

∥∥∥a· 2q
q−2 · p−m+1

m+p−1

L2(�)
+ c2c

2q
q−2 · p−m+1

m+p−1
1 (34)

on (0, T ).
In obtaining such an estimate for m ≥ 2 we could use the same argument. It is, however, 

possible to obtain better conditions by relying on Lemma 3.3 instead of Lemma 3.1. Apart from 
that, the reasoning is analogous: We have p ≥ 2

(
1 − 1

q

)
(m − 1), which implies qp ≥ (q − 2 +

q)(m − 1), thus q(p − m + 1) ≥ (m − 1)(q − 2) and hence
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2(m − 1)

m + p − 1
≤ 2q

q − 2
· p − m + 1

p + m − 1
(35)

and let

b :=
m+p−1
2(m−1)

− q−2
2q

· p+m−1
p−m+1

m+p−1
2(m−1)

+ 1
N

− 1
2

,

noting that

b · 2q

q − 2
· p − m + 1

m + p − 1
≤ 2, (36)

because p ≤ (m − 1)(
q
2 + (q−2)(N+2)

2N
) implies that ( q

q−2 − 1)(
p

m−1 ) = 2
q−2

p
m−1 ≤ N+2

N
+ q

q−2

and hence q(p−m+1)
(m−1)(q−2)

= q
q−2 (

p
m−1 − 1) ≤ p

m−1 + N+2
N

= m+p−1
m−1 + 2

N
, which shows that p−m+1

2(m−1)
·

2q
q−2 − 1 ≤ m+p−1

m−1 + 2
N

− 1 and therefore also

b · 2q

q − 2
· p − m + 1

m + p − 1
=

m+p−1
2(m−1)

− q−2
2q

· p+m−1
p−m+1

m+p−1
2(m−1)

+ 1
N

− 1
2

· 2q

q − 2
· p − m + 1

m + p − 1

=
q

q−2 · p−m+1
2(m−1)

− 1
m+p−1
2(m−1)

+ 1
N

− 1
2

≤ 2.

Lemma 3.3 yields c3 > 0 such that∥∥∥um+p−1
2 (·, t)

∥∥∥
L

2(m−1)
m+p−1 (�)

≤ c3 for all t ∈ (0, T )

and hence (31) and (35) enable us to invoke the Gagliardo–Nirenberg inequality and obtain c4 >

0 such that on (0, T )∫
�

u
(p+1−m)

q
q−2 =

∫
�

u
m+p−1

2 (
2q

q−2 · p−m+1
m+p−1 )

=
∥∥∥um+p−1

2

∥∥∥ 2q
q−2 · p−m+1

m+p−1

L
2q

q−2 · p−m+1
m+p−1 (�)

≤ c4

∥∥∥∇u
m+p−1

2

∥∥∥a· 2q
q−2 · p−m+1

m+p−1

L2(�)

∥∥∥um+p−1
2

∥∥∥(1−a)· 2q
q−2 · p−m+1

m+p−1

L
2(m−1)
m+p−1 (�)

+ c4

∥∥∥um+p−1
2

∥∥∥ 2q
q−2 · p−m+1

m+p−1

L
2

m+p−1 (�)

≤ c4c
(1−a)· 2q

q−2 · p−m+1
m+p−1

3

∥∥∥∇u
m+p−1

2

∥∥∥a· 2q
q−2 · p−m+1

m+p−1

L2(�)
+ c4c

2q
q−2 · p−m+1

m+p−1
3 . (37)

From either (34) and (33) or (37) and (36) (and possibly Young’s inequality) we hence find 
that with some c5 > 0 we have
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∫
�

u
(p+1−m)

q
q−2 ≤ c5

∥∥∥um+p−3
2 ∇u

∥∥∥2

L2(�)
+ c5 on (0, T ). (38)

In

1

p

d

dt

∫
�

up + (p − 1)δ

∫
�

up+m−3|∇u|2 ≤ (p − 1)

∣∣∣∣∣∣
∫
�

up−1∇u · ∇w

∣∣∣∣∣∣ on (0, T )

we can apply Young’s inequality to see that on (0, T )

(p − 1)

∣∣∣∣∣∣
∫
�

up−1∇u · ∇w

∣∣∣∣∣∣≤ (p − 1)δ

4

∫
�

up+m−3|∇u|2 + p − 1

δ

∫
�

up−m+1|∇w|2.

A further application of Young’s inequality allows us to separate u and |∇w| in the last integral 
according to

p − 1

δ

∫
�

up−m+1|∇w|2 ≤ c5(p − 1)

δ3

∫
�

|∇w|q + (p − 1)δ

4c5

∫
�

u
(p+1−m)

q
q−2 , on (0, T ).

Therefore, due to (38), in total,

1

p

d

dt

∫
�

up + (p − 1)δ

2

∫
�

up+m−3|∇u|2 ≤ (p − 1)δ

4
+ c5(p − 1)

δ3

∫
�

|∇w|q on (0, T ).

Integration with respect to time produces the lemma. �
We are particularly interested in applying the previous lemma for some p > N , because for 

such p, a bound on 
∫
�

up on some interval [0, T ] already ensures uniform boundedness of ∇v

(and hence ∇w) on � × [0, T ].

Lemma 3.12. Let δ > 0. Assume that either

i) 2 − 1
N

< m ≤ 2, N ≥ 2, q > N and q > 1 + N2+1
Nm−N+1 , or

ii) m ≥ 2, N ≥ 2, q > N and q > 2N2+2m2+2m−4
(m−1)(N+m+2)

.

Then there is p > N and for every K > 0 and T ∈ (0, ∞) there is C > 0 such that whenever 
u ∈ C0(� × [0, T )) ∩ C2,1(� × (0, T )) solves (17a), (17c), (17d), with some D ∈ Cδ,m, some u0
as in (18) and such that ‖u0‖Lmax{1,m−1}(�) ≤ K , and some w ∈ C0(�×[0, T )) ∩C2,1(�×(0, T ))

satisfying

T∫ ∫
|∇w|q ≤ K,
0 �
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then ∫
�

up(·, t) ≤ C for all t ∈ (0, T ).

Proof. i) For ̃q = 2 we have m − 2
q̃

= m − 1 = (̃q − 1)(m − 1) + q̃−2
N

and because m > 2 − 1
N

, 
for every ̃q ≥ 2 we have

d

dq̃

(
m − 2

q̃

)
= 2

q̃2
≤ 1 = 2 − 1

N
− m + m − 1 + 1

N
< m − 1 + 1

N

= d

dq̃

(
(̃q − 1)(m − 1) + q̃ − 2

N

)
.

Therefore m − 2
q

< (q − 1)(m − 1) + q−2
N

. Furthermore q > 1 + N2+1
mN−N+1 = m−1+ 2

N
+N

m−1+ 1
N

implies 

that

(q − 1)(m − 1) + q − 2

N
= q

(
m − 1 + 1

N

)
+ 1 − m − 2

N
> N.

Hence it is possible to find p > N such that p > m − 2
q

and p < (q − 1)(m − 1) + q−2
N

and an 
application of Lemma 3.11 proves the statement.

ii) Since x + 1
x

≥ 2 for all x > 0, and since q ≥ 2, we have

2 − 2

q
≤ q

2
+ (q − 2)(m + 2)

2N

and hence 2(1 − 1
q
)(m − 1) ≤ (m − 1)(

q
2 + (q−2)(m+2)

2N
). The fact that q > 2N2+2m2+2m−4

(m−1)(N+m+2)
=

1
(m−1)(N+m+2)

(2N2 + (2m + 4)(m − 1)) = ( 2N2

m−1 + 2m + 4) 1
N+m+2 shows that q(N + m + 2) >

2m + 4 + 2N2

m−1 and hence N < m−1
2N

(q(N + m + 2) − 2m − 4) = m−1
2N

(Nq + (q − 2)(m + 2)) =
(m − 1)(

q
2 + (q−2)(m+2)

2N
). Therefore we can choose p > N such that

p < (m − 1)

(
q

2
+ (q − 2)(m + 2)

2N

)
and p > 2

(
1 − 1

q

)
(m − 1)

and apply Lemma 3.11 for this choice of p to obtain the assertion. �
The previous lemma requires a bound on some 

∫ T

0

∫
�

|∇w|q . Fortunately, this is exactly what 
we have prepared in Lemma 3.5, Lemma 3.7, Lemma 3.9, and Lemma 3.10.

Lemma 3.13. Let m > 1 + N
4 and δ > 0. Then there is p > N and for every K > 0 and T > 0

there is C > 0 such that every solution (u, w) ∈ (C0(�×[0, T )) ∩C2,1(�×(0, T )))2 of (17) with 
initial data (u0, w0) as in (18) and with ‖u0‖L1(�) ≤ K , ‖w0‖W 1,∞(�) ≤ K and any D ∈ C+

δ,m

satisfies
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∫
up(·, t) ≤ C for every t ∈ (0, T ).

Proof. By the choice of m, from Lemma 3.9 we know that we can find C > 0 such that for any 
u0, w0 and D as above, any solution (u, w) ∈ (C0(� × [0, T )) ∩ C2,1(� × (0, T )))2 of (17)
satisfies 0 ≤ w ≤ C in � × (0, T ). Lemma 3.10 therefore warrants that the desired conclusion 
results from a combination of Lemma 3.5 and Lemma 3.7 with Lemma 3.12 – provided that there 
are parameters p, q, r that simultaneously satisfy all conditions posed by these lemmata. This is 
what we ensure in the remainder of the proof:
Case N = 2, m ∈ ( 3

2 , 2]: We let r = 4(m − 1), p = 2, and q = 4m − 2. Then r(1 − 1
p
) =

4(m − 1)(1 − 1
2 ) = 2(m − 1) ≤ 2m − 2 = 2m − 3 + 2

2 , which enables us to invoke Lemma 3.5 i). 
Moreover, m > 3

2 implies 4m − 4 > 2 and thus r > p, and we have q = 4m − 2 = 2 + 4m − 4 ≤
2 + (2 − 2

2 )4(m − 1) = N + (2 − N
p

)r . Therefore, Lemma 3.7 becomes applicable. Thanks to 

q = 4m − 2 ≥ 4 · 3
2 − 2 = 4 > 2 = N and thanks to m ≥ 3

2 , hence q = 4m − 2 > 4 · 32 − 2 > 7
2 =

1 + 5
2· 3

2 −1
> 1 + 5

2m−1 = 1 + N2+1
Nm−N+1 holds true, facilitating the use of Lemma 3.12 i).

Case N = 3, m ∈ ( 7
4 , 2]: Here we let r = p = 2m − 4

3 . Then p ≥ 1, r ≥ 1, p = 2m − 4
3 <

6m − 6 = 2N
N−2 (m − 1) and r(1 − 1

p
) = r − 1 = 2m − 7

3 = 2m − 3 + 2
N

, so that Lemma 3.5

i) can be used. Since m > 7
4 = 21

12 > 19
12 , we have that 12m2 − 19m − 8

3 = 12(m − 19
12 )m − 8

3 ≥
12( 7

4 − 19
12 ) 7

4 − 8
3 = 7

2 − 8
3 = 21−16

6 > 0 and thus 3m +8 < 12m2 −16m + 16
3 = (4m − 8

3 )(3m −2), 
i.e. 2p > 3m+8

3m−2 . Furthermore, p = 2m − 4
3 ≤ 4 − 4

3 = 8
3 < 3 and p = 2m − 4

3 ≥ 7
2 − 4

3 = 21−8
6 =

13
6 > 3

2 , so that consequently, also 3p
3−p

> 2p holds. We choose q ∈ ( 3m+8
3m−2 , 2p), thereby ensuring 

the applicability of Lemma 3.7. Since finally q > 3m+8
3m−2 = m+ 8

3

m− 2
3

= 1 + 10
3

m− 2
3

= 1 + 3+ 1
3

m−1+ 1
3

and 

q > 3m+8
3m−2 = 1 + 10

3m−2 ≥ 1 + 10
6−2 = 7

2 > 3 ≥ 2 we may also draw on Lemma 3.12 i).

Case N ≥ 2, m ≥ 2, m ≥ 1 + N
4 : Let r := p := 2N+1

N
(m − 1). Then obviously p = r > 1. 

Moreover, p ≤ 2N
N−2 (m − 1) (because 2N

N−2 > 2+2N
N

is equivalent to 2N2 > 2N2 + 2N − 4N − 4
and hence to 0 > −2N − 4) and(

1

m − 1
− 1

p

)
r = p

m − 1
− 1 = 2

N + 1

N
− 1 = N + 2

N
≤ 1 + 2

N
,

so that the conditions of Lemma 3.5 ii) are satisfied. We furthermore let q := 2p = 4(N+1)
N

(m −1)

and note that p > N
2 , since 2N+1

N
(m − 1) > 2 · N+1

N
N
4 = N+1

2 > N
2 , and that q ≤ 2p =

2r + N − N r
p

, that moreover either p ≥ N or p < N and q = 2p <
Np

N−p
, because p > N

2 , 
and therefore Lemma 3.7 is applicable. In order to see that these choices also make the use of 
Lemma 3.12 ii) viable, we first investigate the polynomial

PN(m) := (2N + 2)m3 + (2N2 + N)m2 + (−4N2 − 11N − 6)m − N3 + 2N2 + 8N + 4. (39)

It is extremal whenever P ′
N(m) = (6N + 6)m2 + (4N2 + 2N)m + (−4N2 − 11N − 6) = 0, 

which is the case for exactly two real numbers that lie in (−∞, 2), because for m ≥ 2 we have 
P ′

N(m) ≥ (24N + 24) + (8N2 + 4N) + (−4N2 − 11N − 6) > 0. We claim that PN(m) > 0 for 
any m > max

{
2,1 + N

}
and for this compute PN(max

{
2,1 + N

}
):
4 4
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PN(2) = 16N + 16 + 8N2 + 4N − 8N2 − 22N − 12 − N3 + 2N2 + 8N + 4

= −N3 + 2N2 + 6N + 8

=

⎧⎪⎨⎪⎩
−8 + 8 + 12 + 8 > 0, N = 2,

−27 + 18 + 18 + 8 > 0, N = 3,

−64 + 32 + 24 + 8 = 0, N = 4,

and

PN

(
1 + N

4

)
= 1

43

(
(2N+2)(N+4)3+4(2N2+N)(N+4)2+16(−4N2−11N−6)(N+4)

− 64N3+128N2+512N+256

)
= 2

43
N2(5N + 3)(N − 4),

which is nonnegative for N ≥ 4. Since PN is nonnegative in max
{
2,1 + N

4

}
and strictly increas-

ing on (2, ∞), we conclude that PN(m) > 0 for any m > max
{
2,1 + N

4

}
. Positivity of PN(m)

is equivalent to

2(N + 1)(m − 1)2(N + m + 2) > N3 + m2N + mN − 2N

and hence

q = 4(N + 1)

N
(m − 1) >

2N2 + 2m2 + 2m − 4

(m − 1)(N + m + 2)
.

Furthermore by the fact that p > N
2 , we also have q > N , and can invoke Lemma 3.12 ii). �

Remark 3.14. The condition m > 1 + N
4 in Lemma 3.13 is first and foremost employed to guar-

antee boundedness of w, that is, boundedness of v from below by a positive constant. Therefore 
it seems reasonable to ask whether it would be possible to soften the assumption on m if we 
already knew that w be bounded. It turns out that the condition m > 2 − 1

N
of Lemma 3.12 is 

as strict as m > 1 + N
4 = 3

2 if N = 2, whereas for N = 3 we see that for any value of p choos-

ing r = 2m−3+ 2
3

1− 1
p

is optimal (cf. Lemma 3.5 i)). Then r ≥ p (required by Lemma 3.7) entails 

p ≤ 2m − 4
3 . Other conditions on p are either obviously satisfied with this choice of p = 2m − 4

3
(namely p < 6m − 6) or are essentially largeness conditions on p. Thus the choice of p, r in the 
second case in the proof of Lemma 3.13 was optimal and we can follow the calculations there, 
which leaves us with two more necessary conditions: p > 3

2 leading to m > 17
12 , and positivity of 

12m2 − 19m − 8
3 , requiring m > 19

24 + 1
8

√
163
3 , which therefore remains as condition on m if one 

already supposes boundedness of w. For N = 4, 7 ≤ m ≤ 2, similarly choosing p = r = 2m − 3

4 2
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admits application of Lemma 3.5 i), whereas for invoking Lemma 3.7 and Lemma 3.12 we need 
some q between 1 + N2+1

Nm−N+1 = 4m+14
4m−3 and 2p = 4m − 3, which exists if 4m − 3 > 4m+14

4m−3 , 

i.e. m > 1
8 (7 + √

69). The conditions r ≥ p ≥ N
2 of Lemma 3.7 and r(1 − 1

p
) ≤ 2m − 3 + 2

N

(Lemma 3.5i)) imply N
2 − 1 ≤ 2m − 3 + 2

N
and hence m ≥ N

4 − 1
N

+ 1 so that for N ≥ 5
any choice of m ≤ 2 is impossible and for these dimensions we may restrict our attention to 
Lemma 3.7 and the second parts of Lemmata 3.5 and 3.12. The assumptions of Lemma 3.5 ii) 
combined with the condition r ≥ p of 3.7 imply that p ≤ 2N+1

N
(m −1). Therefore it is necessary 

that 2N+1
N

(m − 1) > N
2 , i.e. m > (N+2)2

4(N+1)
– apart from this condition we are led to follow the case 

“N ≥ 2, m ≥ 2” of the proof of Lemma 3.13. In conclusion: If boundedness of w were known a 
priori, the present proof would be applicable if

m >

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

3
2 , N = 2,

19
24 + 1

8

√
163
3 , N = 3,

1
8 (7 + √

69), N = 4,

max
{

(N+2)2

4(N+1)
, largest root of PN from (39)

}
, N ≥ 5. �

Having completed the necessary preparations, we can now turn to the proof of existence of a 
global solution. In order to lay the groundwork for compactness arguments in Section 4, at the 
same time we derive a batch of estimates for the solutions.

Lemma 3.15. Let δ > 0, m > 1 + N
4 .

i) For any (u0, v0) as in (4) and any D ∈ C+
δ,m there is a global classical solution (u, v) ∈

(C0(� × [0, ∞)) ∩ C2,1(� × (0, ∞)))2 to (5).
ii) Moreover, for every T > 0, K > 0 there is CT > 0 such that for every D ∈ Cδ,m and (u0, v0)

as in (4) with ‖u0‖Lmax{1,m−1}(�) ≤ K , 1
K

≤ ‖v0‖L∞(�), ‖v0‖W 1,∞(�) ≤ K , every solution 
(u, v) ∈ (C0(� × [0, T )) ∩ C2,1(� × (0, T )))2 to (5) satisfies

‖u‖L∞(�×(0,T )) ≤ CT (40)

‖v‖L∞((0,T );W 1,∞(�)) ≤ CT (41)∥∥∥∥1

v
∇v

∥∥∥∥
L∞(�×(0,T ))

≤ CT (42)

‖D(u)∇u‖L2(�×(0,T )) ≤ CT (43)∥∥∥∇um−1
∥∥∥

L2(�×(0,T ))
≤ CT , (44)

T∫
0

∫
�

D(u)um−3|∇u|2 ≤ CT , (45)

‖vt‖L2((0,T );(W 1,1
0 (�))∗) ≤ CT , (46)

‖ut‖L1((0,T );(W 1,N+1
0 (�))∗) ≤ CT

(
1 + sup D(s)

)
. (47)
s∈[0,CT ]
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Proof. According to Lemma 2.4, corresponding to (u0, v0) and D as in the hypothesis of the 
present lemma, there is a local solution (u, v) ∈ (C0(� × [0, Tmax)) ∩ C2,1(� × (0, Tmax)))

2. 
We now let T ∈ (0, Tmax] ∩ (0, ∞) and K > 0. By IDK let us abbreviate the set of initial data

IDK :=
{
(u0, v0) ∈ Cα(�) × W 1,∞(�) for some

α ∈ (0,1); ‖u0‖L∞(�) ≤ K,‖v0‖W 1,∞(�) ≤ K

}
.

Lemma 3.13 provides us with p > N and c1 > 0 such that for every D ∈ Cδ,m and every 
(u0, v0) ∈ IDK , every classical solution (u, v) ∈ (C0(� × [0, T )) ∩ C2,1(� × (0, T )))2 of (5)
satisfies

‖u‖L∞((0,T );Lp(�)) ≤ c1

and hence

‖∇v‖L∞(�×(0,T )) ≤ c2 and ‖w‖L∞(�×(0,T )) ≤ c3

as well as

‖∇w‖L∞(�×(0,T )) ≤ c4

with some c2, c3 and c4 obtained from Lemma 2.1 ii), Lemma 3.9 and Lemma 3.10, respectively, 
and with w being defined as in (16). This asserts (41) and (42). An application of Lemma 3.11
for sufficiently large values of q and p then ascertains the existence of c5 > 0 such that for all 
D ∈ Cδ,m and all (u0, v0) ∈ IDK any classical solution (u, v) of (5) satisfies

‖u∇w‖L∞((0,T );LN+3(�)) ≤ c5,

again with w as in (16). Additionally taking into account Lemma 3.1, we can apply Lemma 2.1 v) 
with f := u∇w so as to obtain c6 > 0 such that for all D ∈ Cδ,m and all (u0, v0) ∈ IDK every 
classical solution (u, v) of (5) satisfies

‖u‖L∞(�×(0,T )) ≤ c6,

which shows (40) and – in light of the extensibility criterion in (15) – also proves i). Given D ∈
Cδ,m we let D̄(s) := ∫ s

0 D(σ)dσ and ¯̄D(s) := ∫ s

0 D̄(σ )dσ for s > 0. Then for every D ∈ Cδ,m

and (u0, v0) ∈ IDK , any classical solution (u, v) of (5) obeys ut = �D̄(u) + ∇ · (u∇w) with w
as in (16), and testing this equation by D̄(u) we obtain

T∫
0

∫
�

( ¯̄D(u))t = −
T∫

0

∫
�

|∇D̄(u)|2 −
T∫

0

∫
�

u∇w · ∇D̄(u),

which, by Young’s inequality, turns into
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∫
�

¯̄D(u(·, T )) + 1

2

T∫
0

∫
�

|D(u)∇u|2 ≤
∫
�

¯̄D(u0) + 1

2

T∫
0

∫
�

u2|∇w|2 ≤ |�| ¯̄D(K) + 1

2
|�|T c2

6c
2
4,

due to nonnegativity of D proving (43). The existence of c7 > 0, c8 > 0 such that for any D ∈
Cδ,m and any (u0, v0) ∈ IDK any solution of (5) satisfies

∥∥∥∇um−1
∥∥∥

L2(�×(0,T ))
≤ c7,

T∫
0

∫
�

D(u)um−3|∇u|2 ≤ c8

immediately results from Lemma 3.3, so that (44) and (45) have been shown. For every 
φ ∈ C∞

0 (�) we have that any solution (u, v) of (5) for any D ∈ Cδ,m, (u0, v0) ∈ IDK satisfies∣∣∣∣∣∣
∫
�

vtφ

∣∣∣∣∣∣=
∣∣∣∣∣∣−

∫
�

∇φ · ∇v −
∫
�

uvφ

∣∣∣∣∣∣≤ c2 ‖∇φ‖L1(�) + Kc6 ‖φ‖L1(�)

and we can conclude (46). We let c9 > 0 be such that ‖ϕ‖L∞(�) ≤ c9 for every ϕ ∈ W
1,N+1
0 (�)

with ‖ϕ‖
W

1,N+1
0 (�)

≤ 1 and c10 > 0, c11 > 0 such that ‖ϕ‖L2(�×(0,T )) ≤ c10, ‖ϕ‖L1(�×(0,T )) ≤
c11 for every ϕ ∈ L∞((0, T ); LN+1(�)) with ‖ϕ‖

L∞((0,T );W 1,N+1
0 (�))

≤ 1. We denote X :=
L1((0, T ); (W 1,N+1

0 (�))∗) and thus have X∗ = L∞((0, T ); W 1,N+1
0 (�)). Taking φ ∈ X∗ with 

‖φ‖X∗ ≤ 1, for any solution (u, v) of (5) for D ∈ Cδ,m and (u0, v0) ∈ IDK we have

1

m − 1

∣∣∣∣∣∣
T∫

0

∫
�

(um−1)tφ

∣∣∣∣∣∣=
∣∣∣∣∣∣

T∫
0

∫
�

um−2utφ

∣∣∣∣∣∣
≤
∣∣∣∣∣∣

T∫
0

∫
�

um−2φ∇ · (D(u)∇u)

∣∣∣∣∣∣+
∣∣∣∣∣∣

T∫
0

∫
�

um−2φ∇ ·
(u

v
∇v

)∣∣∣∣∣∣
≤ |m − 2|

∣∣∣∣∣∣
T∫

0

∫
�

um−3φD(u)|∇u|2
∣∣∣∣∣∣+

∣∣∣∣∣∣
T∫

0

∫
�

um−2D(u)∇u · ∇φ

∣∣∣∣∣∣
+ |m − 2|

∣∣∣∣∣∣
T∫

0

∫
�

um−2φ

v
∇v · ∇u

∣∣∣∣∣∣+
∣∣∣∣∣∣

T∫
0

∫
�

um−1

v
∇v · ∇φ

∣∣∣∣∣∣=: I1 + I2 + I3 + I4,

where we can estimate I1 ≤ |m − 2|c8c9,

I2 ≤ 1

2

T∫
0

∫
�

um−3D(u)|∇u|2 + 1

2

T∫
0

∫
�

um−1D(u)|∇φ|2 ≤ c8

2
+ 1

2
cm−1

6 c2
10 sup

s∈[0,c6]
D(s),

moreover



JID:YJDEQ AID:8644 /FLA [m1+; v1.241; Prn:20/12/2016; 15:08] P.29 (1-33)

J. Lankeit / J. Differential Equations ••• (••••) •••–••• 29
I3 ≤ c9c4|m − 2|
∥∥∥um−2∇u

∥∥∥
L1(�×(0,T ))

≤ c9c4|m − 2|√|�|T
∥∥∥um−2∇u

∥∥∥
L2(�×(0,T ))

= c9c4|m − 2|√|�|T
m − 1

∥∥∥∇um−1
∥∥∥

L2(�×(0,T ))
≤ c9c4c7|m − 2|√|�|T

m − 1

and I4 ≤ cm−1
6 c4c11, so that finally

∥∥∥(um−1)t

∥∥∥
L1((0,T );(W 1,N+1

0 (�))∗)
≤ c12 + c13 sup

s∈[0,c6]
D(s),

where c12 := c8c9|m − 2| + c8
2 + c9c4c7|m−2|√|�|T

m−1 + cm−1
6 c4c11 and c13 := 1

2cm−1
6 c2

10, holds for 
any solution (u, v) of (5) for any (u0, v0) ∈ IDK and any D ∈ Cδ,m. �
Proof of Theorem 1.1. Lemma 3.15 i) together with (40) contains Theorem 1.1. �
4. Weak solutions in the degenerate case. Proof of Theorem 1.2

If the diffusion becomes degenerate at points where u = 0, we can no longer hope for classical 
solutions. Therefore we introduce the following definition of weak solutions that are – in line with 
our goal of finding solutions that do not blow up in finite time – locally bounded.

Definition 4.1. Let δ > 0, m ≥ 1 and D ∈ Cδ,m and define D̄(s) := ∫ s

0 D(σ)dσ for s ∈ [0, ∞). 
Moreover, let (u0, v0) be as in (4). By a locally bounded global weak solution to (5) we mean a 
pair of functions (u, v) : � × [0, ∞) → R

2 such that

u ∈ L∞
loc([0,∞);L∞(�))

D̄(u) ∈ L2
loc([0,∞);W 1,2(�))

v ∈ L∞
loc([0,∞);W 1,∞(�))

and for every φ ∈ C∞
0 (� × [0, ∞)) we have

−
∞∫

0

∫
�

uφt −
∫
�

u0φ(·,0) = −
∞∫

0

∫
�

∇D̄(u) · ∇φ +
∞∫

0

∫
�

u

v
∇v · ∇φ (48)

and

−
∞∫

0

∫
�

vφ −
∫
�

v0φ(·,0) = −
∞∫

0

∫
�

∇v · ∇φ −
∞∫

0

∫
�

uvφ. (49)

Having prepared a lot of bounds on solutions to (5) for D ∈ C+
δ,m that are uniform in D ∈ C+

δ,m

(Lemma 3.15), we approximate D ∈ Cδ,m and find a limit of the corresponding solutions.
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Proof of Theorem 1.2. Let D ∈ Cδ,m. For any ε > 0 we define Dε(s) := D(s + ε), s ∈ [0, ∞), 
and note that, for any ε > 0, Dε ∈ C+

δ,m. We choose (u0,ε, v0,ε) ∈ (C1(�))2 such that u0,ε → u0

and v0,ε → v0 in L1(�) as ε ↘ 0 and that there is K > 0 such that for all ε ∈ (0, 1) we have ∥∥u0,ε

∥∥
Lmax{1,m−1}(�)

+ ∥∥v0,ε

∥∥
W 1,∞(�)

≤ K and 
∥∥v0,ε

∥∥
L∞(�)

> 1
K

, and let (uε, vε) ∈ (C0(� ×
[0, ∞)) ∩ C2,1(� × (0, ∞)))2 denote a solution to

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
uεt = ∇ · (Dε∇uε) − ∇ ·

(
uε

vε
∇vε

)
in � × (0,∞),

vεt = �vε − uεvε in � × (0,∞),

uε(·,0) = u0,ε, vε(·,0) = v0,ε in �,

∂νuε

∣∣
∂�

= 0 = ∂νvε

∣∣
∂�

in (0,∞),

(50)

which exists due to 3.15 i).
Let us define D̄ε(s) :=

∫ s

0 Dε(σ)dσ , s ∈ [0, ∞). We claim that for every n ∈ N there is a 
sequence (εn,k)k∈N such that εn,k → 0 as k → ∞ for any n ∈ N, that for n > 1 the sequence 
(εn,k)k∈N is a subsequence of (εn−1,k)k∈N and that for any n ∈N

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

uεn,k
converges a.e. in � × (0, n) and in L1(� × (0, n))

D̄εn,k
(uεn,k

) converges weakly in L2((0, n);W 1,2
0 (�))

vεn,k
converges uniformly in � × (0, n)

∇vεn,k
converges weakly∗ in L∞(� × (0, n))

1
vεn,k

∇vεn,k
converges weakly∗ in L∞(� × (0, n))

(51)

as k → ∞. For n = 0 we choose an arbitrary monotone sequence (ε0,k)k∈N ⊂ (0, 1) which con-
verges to 0. Let n ∈ N and let us assume that some sequence (εn−1,k)k∈N with properties as in 
(51) is given. Then by Lemma 3.15 ii), more precisely, by (40), there is c1(n) > 0 such that

∥∥uεn−1,k

∥∥
L∞(�×(0,n))

≤ c1(n) for all k ∈ N. (52)

We abbreviate

dn := sup
ε∈(0,1)

sup
0≤s≤c1(n)

Dε(s) ≤ sup
0≤s≤c1(n)+1

D(s).

Then

D̄εn−1,k
(uεn−1,k

(x, t)) ≤
c1(n)∫
0

dn = c1(n)dn for all (x, t) ∈ � × (0, n)

and combining this with (43), we find c2(n) > 0 such that for all k ∈ N

∥∥D̄ε (uε )
∥∥

2 1,2 ≤ c2(n).

n−1,k n−1,k L ((0,n);W (�))
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Hence there is a subsequence (ε(1)
n,k)k∈N of (εn−1,k)k∈N such that (D̄

ε
(1)
n,k

(u
ε
(1)
n,k

))k∈N is weakly 

convergent in L2((0, n); W 1,2(�)). Moreover, (44), (40) and (47) show that there is c3(n) such 
that for all k ∈N∥∥∥∥um−1

ε
(1)
n,k

∥∥∥∥
L2((0,n);W 1,2(�))

≤ c3(n),

∥∥∥∥(um−1
ε
(1)
n,k

)
t

∥∥∥∥
L1((0,n);(W 1,N+1

0 )∗)
≤ c3(n).

Since W 1,2(�) 
cpt
↪→ L2(�) ↪→ (W

1,N+1
0 (�))∗, we can invoke a version of the Aubin–Lions 

lemma ([33, Cor. 8.4]) to find a subsequence (ε(2)
n,k)k∈N of (ε(1)

n,k)k∈N such that (um−1
ε
(2)
n,k

)k∈N is 

convergent in L2((0, n); L2(�)), and a further subsequence (ε(3)
n,k)k∈N of (ε(2)

n,k)k∈N such that 

(um−1
ε
(3)
n,k

)k∈N and thus, by continuity of [0, ∞) � x �→ x
1

m−1 , also (u
ε
(3)
n,k

)k∈N converge a.e. in 

� × (0, n) as well as with respect to the norm of L1(� × (0, n)) due to Lebesgue’s dominated 
convergence theorem and the fact that the constant c1(n) is integrable over � × (0, n). Moreover, 
(41) and (46) ensure the existence of c4(n) > 0 such that

∥∥∥∥vε
(3)
n,k

∥∥∥∥
L∞((0,n);W 1,∞(�))

≤ c4(n),

∥∥∥∥(v
ε
(3)
n,k

)
t

∥∥∥∥
L2((0,n);(W 1,1

0 (�))∗)
≤ c4(n) for all k ∈N

and again due to W 1,∞(�) 
cpt
↪→ C0(�) ↪→ (W

1,1
0 (�))∗ and [33, Cor. 8.4] we find a subsequence 

(ε
(4)
n,k)k∈N of (ε(3)

n,k)k∈N such that (v
ε
(4)
n,k

)k∈N converges uniformly in � × (0, n). Additionally, (41)

produces another subsequence (ε(5)
n,k)k∈N of (ε(4)

n,k)k∈N such that (∇v
ε
(5)
n,k

)k∈N converges weakly∗

in L∞(� × (0, n)). Finally, owing to the bound in (42), we can extract a further subsequence 

(εn,k)k∈N of (ε(5)
n,k)k∈N such that also 

(
1

vεn,k
∇vεn,k

)
k∈N

is weakly∗ convergent in L∞(� × (0, n)). 

We then use the diagonal sequence (̃εk)k∈N := (εk,k)k∈N to find functions u, v, z : � ×[0, ∞) →
R and ζ, ξ : � × [0, ∞) → R

N such that

uε̃k
→ u in L1

loc([0,∞),L1(�)) and a.e. in � × (0,∞), (53)

ṽεk
→ v in L∞

loc([0,∞);C0(�)), (54)

D̄ε̃k
(uε̃k

) ⇀ z in L2
loc([0,∞);W 1,2(�)), (55)

∇ṽεk

∗
⇀ ζ in L∞

loc([0,∞),L∞(�)) and (56)

1

ṽεk

∇ṽεk

∗
⇀ ξ in L∞

loc([0,∞),L∞(�)) (57)

as k → ∞. Since uε̃k
+ ε̃k → u a.e. and D̄ is continuous, also D̄ε̃k

(uε̃k
) = D̄(uε̃k

+ ε̃k) −D̄(̃εk) →
D̄(u) − D̄(0) = D̄(u) a.e., and hence z = D̄(u). Also, (54) and (56) imply ζ = ∇v and the 
combination of (54) and (57) shows that ξ = 1

v
∇v. We let φ ∈ C∞

0 (� × [0, ∞)). Then (50)
entails that
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−
∞∫

0

∫
�

uε̃k
φt −

∫
�

u0̃εk
φ(·,0) = −

∞∫
0

∫
�

∇D̄ε̃k
(uε̃k

) · ∇φ +
∞∫

0

∫
�

uε̃k

ṽεk

∇ṽεk
· ∇φ

and

−
∞∫

0

∫
�

ṽεk
φ −

∫
�

v0̃εk
φ(·,0) = −

∞∫
0

∫
�

∇ṽεk
· ∇φ −

∞∫
0

∫
�

uε̃k
ṽεk

φ,

so that passing to the limit as k → ∞ in each of these integrals shows that (u, v) satisfies (48)
and (49). That u ∈ L∞

loc([0, ∞); L∞(�)) is also entailed by (53) and (52). Hence (u, v) is a 
locally bounded global weak solution to (5) in the sense of Definition 4.1. �
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