期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:261
Global strong solutions to radial symmetric compressible Navier-Stokes equations with free boundary
Article
Li, Hai-liang1  Zhang, Xingwei2 
[1] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[2] Quzhou Univ, Coll Teacher Educ, Quzhou 324000, Peoples R China
关键词: Compressible Navier-Stokes equations;    Free boundary;    Global strong solution;   
DOI  :  10.1016/j.jde.2016.08.038
来源: Elsevier
PDF
【 摘 要 】

In this paper, we consider the two-dimensional barotropic compressible Navier-Stokes equations with stress free boundary condition imposed on the free surface. As the viscosity coefficients satisfies mu(rho) = 2 mu, lambda(rho) = p(beta), beta > 1, we establish the existence of global strong solution for arbitrarily large spherical symmetric initial data even if the density vanishes across the free boundary. In particular, we show that the density is strictly positive and bounded from the above and below in any finite time if the initial density is strictly positive, and the free boundary propagates along the particle path and expand outwards at an algebraic rate. (C) 2016 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2016_08_038.pdf 379KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次