期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:477
Initial boundary value problem for nonlinear Dirac equation of Gross-Neveu type in 1+1 dimensions
Article
Zhang, Yongqian1  Zhao, Qin2 
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
关键词: Nonlinear Dirac equation;    Gross-Neveu model;    Global strong solution;    Bony type functional;    Glimm type functional;   
DOI  :  10.1016/j.jmaa.2019.04.058
来源: Elsevier
PDF
【 摘 要 】

This paper studies an initial boundary value problem for a class of nonlinear Dirac equations with cubic terms, which include the equations for the massive Thirring model and the massive Gross-Neveu model. Under the assumptions that the initial data has bounded L-2 norm and the boundary satisfies suitable conditions, the global existence and the uniqueness of the strong solution are proved. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2019_04_058.pdf 469KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次