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This paper studies an initial boundary value problem for a class of nonlinear Dirac 
equations with cubic terms, which include the equations for the massive Thirring 
model and the massive Gross-Neveu model. Under the assumptions that the initial 
data has bounded L2 norm and the boundary satisfies suitable conditions, the global 
existence and the uniqueness of the strong solution are proved.
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1. Introduction

Consider the nonlinear Dirac equations
{

i(ut + ux) = −mv + N1(u, v),
i(vt − vx) = −mu + N2(u, v),

(1.1)

in a domain Ω = {(x, t) 
∣∣ t ≥ 0, x ≥ z(t)} for m ≥ 0 with initial data

(u(x, t = 0), v(x, t = 0)) = (u0(x), v0(x)), x ≥ 0, (1.2)

and boundary condition

u(z(t), t) = λ(t)v(z(t), t), t ≥ 0. (1.3)

The nonlinear terms take the following form
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N1 = ∂uW (u, v) = αu|v|2 + 2βv(uv + uv), (1.4)

N2 = ∂vW (u, v) = αv|u|2 + 2βu(uv + uv), (1.5)

with

W (u, v) = α|u|2|v|2 + β(uv + uv)2,

where α, β ∈ R1 and u, v are complex conjugate of u and v.
The boundary {x = z(t)}, denoted by ΓB , is assumed to satisfy the following,

(H1): −1 < zt(t) < 1, for t ≥ 0 and z(0) = 0.
(H2): |λ(t)|2(1 − zt(t)) ≤ (1 + zt(t)), for t ≥ 0.

Here and in sequel, we denote zt = dz
dt , λt = dλ

dt , ut = ∂u
∂t , ux = ∂u

∂x etc. for simplification.
The nonlinear Dirac equation (1.1) is called Thirring equation for α = 1 and β = 0, while it is called 

Gross-Neveu equation for α = 0 and β = 1/4; see for instance [23] and [14], [20]. There are a number 
of works devoted to the local and global well-posedness of the Cauchy problem for the nonlinear Dirac 
equation with various types of nonlinearities in different spatial dimensions (see for instance [2,4,6,7,9–12,
14,16,20,21,23–25], and the references therein). There are also some papers on the initial boundary value 
problem (see for example [5] and [18]). In [5], motivated to study the Hawking effect describing the collapse 
of a spherically symmetric star to a Schwarzchild black hole, Bouvier and Gérard used technique from C∗

algebra to study the asymptotic behaviour of the global solution to (1.1), (1.2) and (1.3) with a class of 
special initial data in R1+1, where the non-characteristic boundary is assumed to approach characteristic as 
t → ∞, with |λ(t)|2(1 − zt(t)) = (1 + zt(t)) for t ≥ 0 and the solution is assumed to be bounded. In [18,19], 
Naumkin proved the existence of global solution in H1 to initial boundary value problem for Thirring model 
in quarter plane {t > 0, x > 0} with small data and study the scattering behaviour of solution. To our 
knowledge there is no result on the well posedness of initial boundary value problem for Gross-Neveu model 
with general initial data in L2. Our purpose is to prove the existence and the uniqueness in C1(Ω) and in 
L2(Ω) of global solution to (1.1)-(1.3).

The first result is the following.

Theorem 1.1. Suppose that (H1) and (H2) hold. Let (u0, v0) ∈ C1([0, ∞)) with compact support in [0, ∞)
and satisfy the compatibility conditions as follows,

u0(0) = λ(0)v0(0) (1.6)

and

(1 − zt(0))u0x(0) + λ(0)(1 + zt(0))v0x(0) + iλ(0)
(
mu0(0) −N2(u0(0), v0(0))

)
−i

(
mv0(0) −N1(u0(0), v0(0))

)
+ λt(0)v0(0) = 0. (1.7)

Then (1.1)-(1.3) has a unique global solution (u, v) ∈ C1(Ω).

This result could be generalized to the following case.

Theorem 1.2. Suppose that (H1) and (H2) hold. Let (u0, v0) ∈ H1([0, ∞)) satisfy the compatibility conditions 
as follows,

u0(0) = λ(0)v0(0). (1.8)
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Then (1.1)-(1.3) has a unique global solution (u, v) ∈ H1
loc(Ω) ∩ C(Ω). Moreover,

(u(·, t), v(·, t)) ∈ H1([z(t),∞))

for t ∈ [0, ∞).

With Theorem 1.1, we can look for the global strong solution. Here the strong solution is defined as 
follows.

Definition 1.1. A pair of measurable functions (u, v) is called a strong solution to (1.1)-(1.3) if there exists 
a sequence of classical solutions (u(n), v(n)) ∈ C1(Ω) to (1.1) such that

u(n)(z(t), t) = λ(t)v(n)(z(t), t), for t > 0,

and

lim
n→∞

N∫
0

(
|u(n)(x, 0) − u0|2 + |v(n)(x, 0) − v0|2

)
dx = 0,

lim
n→∞

∫∫
K

(
|u(n) − u|2 + |v(n) − v|2

)
dxdt = 0

for any compact set K ⊂ Ω and for any N > 0.

Theorem 1.3. Suppose that (H1) and (H2) hold. For any (u0, v0) ∈ L2
loc([0, ∞)), (1.1)-(1.3) has a unique 

global strong solution (u, v) ∈ L2
loc(Ω). Moreover, |u||v| ∈ L2

loc(Ω), and (u, v) solves (1.1)-(1.3) in the 
following sense,

∫∫
Ω

(
iu(φt + φx) −mvφ + N1(u, v)φ

)
dxdt = −i

∞∫
0

u0φ(x, 0)dx, (1.9)

∫∫
Ω

(
iv(ψt − ψx) −muψ + N2(u, v)ψ

)
dxdt = −i

∞∫
0

v0ψ(x, 0)dx (1.10)

for any (φ, ψ) ∈ C1(Ω) with bounded support in Ω and (φ, ψ)(z(t), t) = 0 for t ≥ 0.

Moreover, we have the following.

Theorem 1.4. Suppose that (H1) and (H2) hold. If (u0, v0) ∈ L2([0, ∞)), then the strong solution (u, v) given 
by Theorem 1.3 satisfies the following,

(u, v) ∈ L2(Ω ∩ (R1 × [0, T ])), |u||v| ∈ L2(Ω ∩ (R1 × [0, T ]))

for any T > 0. Moreover, if |λ(t)|2(1 − zt(t)) = (1 + zt(t)) for t ≥ 0, then

∞∫
z(t)

(|u(x, t)|2 + |v(x, t)|2)dx =
∞∫
0

(|u0(x)|2 + |v0(x)|2)dx

for almost every t ∈ [0, ∞).
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The remaining is organized as follows. First, in section 2, to prove Theorem 1.1 and Theorem 1.2 for 
(1.1-1.3), we derive the equations (2.1) and (2.2) for |u|2 and |v|2 for local smooth solution (u, v), and 
apply the characteristic method to the equations (2.1) and (2.2) to get the pointwise bounds on |u|2 and 
|v|2. Then it enables us to get the uniform L∞ bounds on (u, v) in the domain Ω ∩ {0 ≤ t < T} for any 
T > 0 and extend the local solution globally. In section 3 we introduce a Bony type functional Q0(t, Δ)
and a Glimm type functional F0(t, Δ) = L(t, u, Δ) + K0L(t, v, Δ) + C0Q0(t, Δ) for smooth solution (u, v)
to get L2 estimates of nonlinear term, 

∫∫
Δ |u(x, t)|2|v(x, t)|2dxdt on each characteristic triangle Δ. Here 

different from the work in [25], for the case that Δ ∩ ∂Ω 	= ∅, by the assumption (H2) we choose a suitable 
constant K0 > 0 so that the derivative of the weighted L2 norm, d

dt

(
L(t, u, Δ) +K0L(t, v, Δ)

)
can control the 

possible increasing of the functional Q0(t, Δ), and choose a suitable constant C0 so that F0(t, Δ) can control ∫∫
Δ |u(x, t)|2|v(x, t)|2dxdt, while for the case that Δ ⊆ Ω same argument as in [25] can be carried out to get 

the control on 
∫∫

Δ |u(x, t)|2|v(x, t)|2dxdt. In section 4, we consider the difference (U, V ) = (u −u′, v−v′) for 
two smooth solutions (u, v) and (u′, v′). We first write down the equations (4.1) and (4.2) for (U, V ), which 
contain (U, V ), (u, v) and (u′, v′). Then we introduce a Bony type functional Q1(t, Δ) and a Glimm type 
functional F1(t, Δ) for |U |2, |V |2, |u|2, |v|2 and |u′|2 and |v′|2, and use it to prove the L2 stability estimates 
in Proposition 4.1. Here, as in section 3, for the case that Δ ∩ ∂Ω 	= ∅, by the assumption (H2) we choose a 
suitable constant K > 0 so that the derivative of the weighted L2 norm, d

dt

(
L(t, U, Δ) + K1L(t, V, Δ)

)
can 

control the possible increasing of the functional Q1(t, Δ). We remark that various Glimm’s type functionals 
and Bony functionals have been used to study the systems of hyperbolic conservation laws, Boltzmann 
equations and nonlinear wave equations, see for instance, [3,8,13,15,22,26] and the references therein. In 
section 5, we first approximate the initial data (1.2) by a sequence of smooth functions. Then, by the result 
on the global well posedness for smooth solution in section 2, we can have a sequence of global smooth 
solutions for smooth data for (1.1). With the help of the L2 stability estimates in section 4, we show that 
the sequence of global smooth solutions converges to a strong solution in L2(Δ) for any triangle Δ. In 
section 6, we complete the proof of Theorem 1.3 and Theorem 1.4.

2. Global classical solution

For T > 0, denote

Ω(T ) = {(x, t) | z(t) ≤ x < ∞, 0 ≤ t < T}.

Classical theory on semilinear hyperbolic systems [1] gives the following local existence result (see also [17]).

Lemma 2.1. Suppose that the compatibility conditions (1.6) and (1.7) hold. For any (u0, v0) ∈ C1([0, ∞))
with compact support in [0, ∞), there exists a T∗ > 0 such that (1.1)-(1.3) has a unique solution (u, v) ∈
C1(Ω(T∗)).

Our aim in this section is to extend the solution (u, v) globally to Ω. To this end, let (u0, v0) ∈ C1([0, ∞))
with compact support and let (u, v) ∈ C1(Ω(T )) be the solution to (1.1)-(1.3) for T ≥ T∗, taking (u0, v0)
as its initial data, we have to establish the estimates on ||(u, v)||L∞(Ω(T )) in the next. Here we assume that 
the compatibility conditions (1.6) and (1.7) hold for (u0, v0).

Multiplying the first equation of (1.1) by u and the second equation by v gives

(|u|2)t + (|u|2)x = 2m�(iuv) + 2�(iN1u), (2.1)

and

(|v|2)t − (|v|2)x = 2m�(iuv) + 2�(iN2v), (2.2)



712 Y. Zhang, Q. Zhao / J. Math. Anal. Appl. 477 (2019) 708–733
which, together with the structure of nonlinear terms, leads to

(|u|2 + |v|2)t + (|u|2 − |v|2)x = 0. (2.3)

For the nonlinear terms in the right-hand side of (2.1) and (2.2), we have the following by direct compu-
tation.

Lemma 2.2. Let r0(x, t) = m(|u(x, t)|2 + |v(x, t)|2) + 8|β||u(x, t)|2|v(x, t)|2. Then there hold the followings,

∣∣2m�(iuv) + 2�(iN1u)
∣∣ ≤ r0(x, t)

and

∣∣2m�(ivu) + 2�(iN2v)
∣∣ ≤ r0(x, t).

And we have the estimates on the L2 norm of the solution as follows.

Lemma 2.3. Let E0 =
∫∞
0 (|u0(x)|2 + |v0(x)|2)dx. Then for any t ∈ [0, T ), there holds the following,

∞∫
z(t)

(|u(x, t)|2 + |v(x, t)|2)dx ≤ E0. (2.4)

Proof. By (1.3) and (2.3), and by assumption (H2), we have

d

dt

∞∫
z(t)

(|u(x, t)|2 + |v(x, t)|2)dx

= |u(z(t), t)|2(1 − zt(t)) − |v(z(t), t)|2(1 + zt(t))

= |v(z(t), t)|2[|λ(t)|2(1 − zt(t)) − (1 + zt(t))] ≤ 0,

which gives the desired inequality and completes the proof. �
We consider the characteristic triangles for (u, v) in Ω(T ). For any a, b ∈ R1 with a < b and for any 

t0 ≥ 0, we denote

Δ(a, b, t0) = {(x, t)
∣∣ a− t0 + t < x < b + t0 − t, t0 < t <

b− a

2 + t0},

see Fig. 1, and, denote

Γu(x0, t0; t1) = {(x, t)
∣∣x = x0 − t0 + t, t1 ≤ t ≤ t0}

and

Γv(x0, t0; t1) = {(x, t)
∣∣x = x0 + t0 − t, t1 ≤ t ≤ t0}

for t1 ≤ t0, see Fig. 2. It is obvious that Γu(x0, t0; t1) is a characteristic line for the first equation of u in 
(1.1) while Γv(x0, t0; t1) is a characteristic line for the second equation of v in (1.1).

Along these characteristic lines in Ω(T ), we have the following estimates.
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Fig. 1. Domain Δ(a, b, t0).
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Fig. 2. Characteristic lines Γu and Γv.

Lemma 2.4. If Γv(x0, t0; t1) ⊆ Ω(T ), then

t0∫
t1

|u(x0 + t0 − s, s)|2ds ≤ E0.

Here E0 =
∫∞
0 (|u0|2 + |v0|2)dx.

Proof. Denote

ω(x0, t0) = {(x, t)|z(t) ≤ x ≤ x0 + t0 − t, 0 ≤ t ≤ t0}.

Then taking the integration of (2.3) over ω(x0, t0) gives the following,

x0+t0∫
0

(|u0(x)|2 + |v0(x)|2)dx

= 2
t0∫

0

|u(x0 + t0 − s, s)|2ds +
x0∫

z(t0)

(|u(x, t0)|2 + |v(x, t0)|2)dx

+
t0∫

0

{
(−1 + zt(s))|u(z(s), s)|2 + (1 + zt(s))|v(z(s), s)|2

}
ds

≥
t0∫
|u(x0 + t0 − s, s)|2ds,
0
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where we use the boundary condition (1.3) and assumption (H2) to get the last inequality. This implies the 
result and the proof is complete. �
Lemma 2.5. If Γu(x0, t0; t1) ⊆ Ω(T ), then

t0∫
t1

|v(x0 − t0 + s, s)|2ds ≤ E0.

Here E0 =
∫∞
0 (|u0|2 + |v0|2)dx.

Proof. Since Γu(x0, t0; t1) ⊆ Ω(T ), then the domain

Δ(x0 − t0 + t1, x0 + t0 − t1, t1) ⊆ Ω(T ).

Taking the integration of (2.3) over Δ(x0 − t0 + t1, x0 + t0 − t1, t1), we have

t0∫
t1

|v(x0 − t0 + s, s)|2ds ≤
x0+t0−t1∫

x0−t0+t1

(|u(x, t1)|2 + |v(x, t1)|2)dx

≤
∞∫

z(t1)

(|u(x, t1)|2 + |v(x, t1)|2)dx

≤ E0,

where the last inequality is given by Lemma 2.3. The proof is complete. �
Using the above estimates on along the characteristic lines, we can get the following pointwise estimates 

on v at first.

Lemma 2.6. For (x, t) ∈ Ω(T ),

|v(x, t)|2 ≤ (|v0(x + t)|2 + mE0) exp(mt + 8|β|E0).

Here E0 =
∫∞
0 (|u0|2 + |v0|2)dx.

Proof. Assumption (H1) implies that

Γv(x, t; 0) ⊂ Ω(T )

for any (x, t) ∈ Ω(T ).
Then, by Lemma 2.2, along Γv(x, t; 0) we use the equation (2.2) to derive that

d

ds
|v(x + t− s, s)|2 ≤ m|u(x + t− s, s)|2 +

(
m + 8|β||u(x + t− s, s)|2

)
|v(x + t− s, s)|2.

Therefore

d

ds

(
|v(x + t− s, s)|2e1(x, t, s)

)
≤ m|u(x + t− s, s)|2e1(x, t, s)

≤ m|u(x + t− s, s)|2,
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Fig. 3. Intersection of boundary and characteristic (b ≤ 0).

where

e1(x, t, s) = exp
(
−ms− 8|β|

s∫
0

|u(x + t− τ, τ)|2dτ
)
.

Taking the integration of the above from s = 0 to t, we can prove the desired result by Lemma 2.4. The 
proof is complete. �

To get the pointwise estimates on u, we look for the intersection point of the boundary ΓB and the 
characteristic line {(x, t)|x − t = b} for b ≤ 0 (see Fig. 3).

Lemma 2.7. For any b ≤ 0, the equation z(t) − t = b has a unique solution t = p(b), where p ∈ C1(−∞, 0]
and p′(s) < 0 for s ≤ 0.

Proof. From assumption (H1) it follows that

zt(t) − 1 < 0

for t > 0, which implies that the function z(t) − t has a global inverse p ∈ C1(−∞, 0]. Moreover,

p′(s) = 1
1 − zt(p(s))

< 0.

Therefore the proof is complete. �
Now we can have the following pointwise estimates on u.

Lemma 2.8. If (x, t) ∈ Ω(T ) with x − t ≥ 0, then

|u(x, t)|2 ≤ (|u0(x− t)|2 + mE0) exp(mt + 8|β|E0).

If (x, t) ∈ Ω(T ) with x − t < 0, then

|u(x, t)|2 ≤ (|λ(t)|2 + 1)(|v0(2p(x− t) + x− t)|2 + mE0) exp(2mt + 16|β|E0).

Here E0 =
∫∞
0 (|u0|2 + |v0|2)dx.
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Proof. For (x, t) ∈ Ω(T ) with x − t ≥ 0, the assumption (H1) implies that

Γu(x, t; 0) ⊆ Ω(T ).

Then, by (2.1) and by Lemma 2.2, we have

d

ds

(
|u(x− t + s, s)|2e2(x, t, s)

)
≤ m|v(x− t + s, s)|2e2(x, t, s)

≤ m|v(x− t + s, s)|2, (2.5)

where

e2(x, t, s) = exp(−ms− 8|β|
s∫

0

|v(x− t + τ, τ)|2dτ).

Taking the integration of (2.5) from 0 to t and using Lemma 2.5, we get

|u(x, t)|2 ≤ (|u0(x− t)|2 + mE0) exp(mt + 8|β|E0).

For (x, t) ∈ Ω(T ) with x − t < 0, Lemma 2.7 implies that the characteristic line Γu(x, t; 0) and the 
boundary intersect only at the point (z

(
p(x − t)

)
, p(x − t)).

Then, by (2.1) and by Lemma 2.2, along the characteristic line Γu(x, t; p(x − t)) we have

d

ds

(
|u(x− t + s, s)|2e3(x, t, s)

)
≤ m|v(x− t + s, s)|2e3(x, t, s)

≤ m|v(x− t + s, s)|2,

where

e3(x, t, s) = exp
(
−m(s− p(x− t)) − 8|β|

s∫
p(x−t)

|v(x− t + τ, τ)|2dτ
)
.

Taking the integration of the above from p(x − t) to t, we use Lemma 2.5 and Lemma 2.6 to get the 
following,

|u(x, t)|2 ≤ (|u(p(x− t) + x− t, p(x− t))|2 + mE0) exp(mt + 8|β|E0)

≤ (|λ(t)|2|v(p(x− t) + x− t, p(x− t))|2 + mE0) exp(mt + 8|β|E0)

≤ (|λ(t)|2 + 1)(|v0(2p(x− t) + x− t)|2 + mE0) exp(2mt + 16|β|E0).

The proof is complete. �
Now using the pointwise estimates on u and v, we can prove Theorem 1.1.

Proof of Theorem 1.1. For (u0, v0) ∈ H1([0, ∞)) ⊂ L∞([0, ∞)), Lemma 2.6 and Lemma 2.8 lead to

|u(x, t)|2 + |v(x, t)|2 ≤ (|λ(t)|2 + 2)
(
||(u0, v0)||L∞ + 2mE0

)
exp(2mt + 16|β|E0)

for x ≥ z(t) and 0 ≤ t < T .
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Then by the standard theory on semilinear hyperbolic equations (see [1] for instance), we can extend the 
solution (u, v) across the time t = T .

Therefore, repeating the same argument for any time, we can extend the solution globally to Ω. The 
proof is complete. �

Furthermore Theorem 1.2 follows from Theorem 1.1.

Proof of Theorem 1.2. Let (φ0, ψ0) ∈ C∞
c (R1) be a pair of functions such that φ0(x) = u0(0) and ψ0(x) =

v0(0) for x belonging to a neighbourhood of zero. Then we choose a sequence of functions (φk
1 , ψ

k
1 ) ∈

C∞
c (0, ∞) such that (u(k)

0 , v(k)
0 ) := (φ0 +φk

1 , ψ0 +ψk
1 ) is convergent to (u0, v0) in H1(0, ∞) as k tends to ∞.

It is obvious that (u(k)
0 , v(k)

0 ) satisfies the compatibility conditions as (1.6) and (1.7). Therefore, by 
Theorem 1.1, the equations (1.1) has a global smooth solution (u(k), v(k)) with the initial data (u(k)

0 , v(k)
0 )

for k ≥ 1.
Moreover, by Lemma 2.6 and Lemma 2.8, we have

sup
k≥1

||(u(k), v(k))||L∞(Ω(T )) < ∞

for any T > 0, which enables us to show as in [1] and [17] that the sequence (u(k), v(k)) is convergent in 
H1(Ω(T )) to a solution (u, v) of (1.1)-(1.3) as k tends to ∞ for any T > 0.

The uniqueness can be proved by the energy inequality for the difference of solutions in L∞(Ω(T )) ∩
H1(Ω(T )) as in [1] and [17]. The proof is complete. �
3. Estimates on the classical solution

Consider the case that (u0, v0) ∈ C1([0, ∞)), and let (u, v) ∈ C1(Ω) be the global solution to (1.1) with 
boundary condition (1.3). Here we assume that the compatibility condition (1.6) and (1.7) hold. Our aim 
in this section is to establish the local estimates on (u, v).

To this end, set Δ = Δ(a, b; t0) for simplification and assume that Δ ∩ Ω 	= ∅ in this section.
Let

x′
0 = b + a

2 , t′0 = b− a

2 + t0.

Then Γu(x′
0, t

′
0; t0) and Γv(x′

0, t
′
0; t0) are the left and right edges of Δ. By (H1), ΓB and Γu(x′

0, t
′
0; t0) ∪

Γv(x′
0, t

′
0; t0) intersect at one point at the most.

We introduce a time interval as follows. Denote

IΔ = {t
∣∣ t0 ≤ t ≤ b− a

2 + t0, z(t) ≤ b + t0 − t}.

By Lemma 2.7, we have the following.

Lemma 3.1. There hold the following statements. (1) If ΓB ∩ Γv(x′
0, t

′
0; t0) = {(z(τ1), τ1)} for some τ1 ≥ t0

(Fig. 4), then IΔ = [t0, τ1] and

{x
∣∣ (x, t) ∈ Δ ∩ Ω} = [z(t), b + t0 − t].

(2) If ΓB ∩ Γu(x′
0, t

′
0; t0) = {(z(τ2), τ2)} for some τ2 ≥ t0 (Fig. 5), then IΔ = [t0, b−a

2 + t0] and

{x
∣∣ (x, t) ∈ Δ ∩ Ω} = [z(t), b + t0 − t] for t ∈ [t0, τ2],
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Fig. 5. Case: ΓB ∩ Γu 	= ∅.

and

{x
∣∣ (x, t) ∈ Δ ∩ Ω} = [a− t0 + t, b + t0 − t] for t ∈ [τ2,

b− a

2 + t0].

(3) If Δ ⊂ Ω, then IΔ = [t0, b−a
2 + t0] and

{x
∣∣ (x, t) ∈ Δ ∩ Ω} = [a− t0 + t, b + t0 − t].

Now we can define the functionals for (u, v) on Δ ∩ Ω as follows.

Definition 3.1. For t ∈ IΔ, and for any w ∈ C1(Ω), define,

L(t, w,Δ) =
b−t+t0∫
za(t)

|w(x, t)|2dx, (3.1)

where

za(t) = max{a + t− t0, z(t)}.

Definition 3.2. For t ∈ IΔ, and for the solution (u, v), define

L0(t,Δ) = L(t, u,Δ) + L(t, v,Δ)
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and

D0(t,Δ) =
b−t+t0∫
za(t)

|u(x, t)|2|v(x, t)|2dx,

Q0(t,Δ) =
∫∫

za(t)<x<y<b−t+t0

|u(x, t)|2|v(y, t)|2dxdy,

where

za(t) = max{a + t− t0, z(t)}.

Then we have the following estimates on the L2 norm.

Lemma 3.2. For t ∈ IΔ, there holds the following,

L0(t,Δ) ≤ L0(t0,Δ).

Proof. It suffices to prove lemma for three cases according to Lemma 3.1.
Case 1: The right edge of Δ and ΓB intersect at some point (z(τ1), τ1), see Fig. 4. In this case IΔ = [t0, τ1].
Then for t ∈ [t0, τ1], za(t) = z(t). Moreover, by (1.3) and (2.3), and by assumption (H2), we have

d

dt

b−t+t0∫
z(t)

(|u(x, t)|2 + |v(x, t)|2)dx

= |u(z(t), t)|2(1 − zt(t)) − |v(z(t), t)|2(1 + zt(t))

−(|u(b− t + t0, t)|2 + |v(b− t + t0, t)|2)

≤ |v(z(t), t)|2[|λ(t)|2(1 − zt(t)) − (1 + zt(t))] ≤ 0.

This leads to the desired result.
Case 2: The left edge of Δ and ΓB intersect at some point (z(τ2), τ2), see Fig. 5. Then IΔ = [t0, t0 + b−a

2 ].
For t ∈ [t0, τ2], za(t) = z(t), and in the same way as in the proof of Case 1, we can get

L0(t,Δ) ≤ L0(t0,Δ).

For t ∈ [τ2, b−a
2 + t0], za(t) = a − t0 + t, then we can use the result for Case 2 to deduce that

L0(t,Δ) ≤ L0(τ2,Δ).

Case 3: Δ lies in the interior of Ω. The proof can be carried out in the same way as in Case 1.
Therefore the proof is complete. �
For any T > 0, we recall the notation

Ω(T ) = {(x, t) | z(t) ≤ x < ∞, 0 ≤ t < T},

and have the control on the potential Q0 for the case that Δ ⊂ Ω(T ) as follows.
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Lemma 3.3. Suppose that Δ ⊂ Ω(T ) for T > 0. Then there exists constant δ0 > 0 such that for the initial 
data satisfying L0(t0, Δ) ≤ δ0 there holds the following

dQ0(t,Δ)
dt

+ D0(t,Δ) ≤ 2m(L0(t0,Δ))2 (3.2)

for t ∈ (t0, b−a
2 + t0). Therefore,

Q0(t,Δ) +
t∫

t0

D0(τ,Δ)dτ ≤ 2m(L0(t0,Δ))2(t− t0) + Q0(t0,Δ)

≤ 2m(L0(t0,Δ))2(t− t0) + (L0(t0,Δ))2 (3.3)

for t ∈ [t0, b−a
2 + t0]. Here δ0 is independent of T .

The proof of Lemma 3.3 has been given in [25] and is similar to the proof of Lemma 3.4 in the next.
To get the control on the potential Q0 near the boundary, we introduce a new functional as follows.

Definition 3.3. For constants K0 > 0 and C0 > 0 and for t ∈ IΔ, define

F0(t,Δ) = L(t, u,Δ) + K0L(t, v,Δ) + C0Q0(t,Δ).

For any T > 0, we have the control on F0 near the boundary as follows.

Lemma 3.4. Suppose that Δ ⊂ R1 × [0, T ] and Δ ∩ ΓB 	= ∅ for T > 0. Then there exist constants δ0 > 0, 
K0 > 0 and C0 > 0 such that for L0(t0, Δ) ≤ δ0 there hold the following,

d

dt
F0(t,Δ) ≤ −D0(t,Δ) − |v(za(t), t)|2 + O(1)δ0, (3.4)

for t ∈ IΔ with z(t) 	= a + t − t0. Here the constants δ0, K0 and C0 depend only on T ; and the bound of O(1)
depends only on T .

Proof. For simplification, we denote L0(t, Δ), D0(t, Δ), F0(t, Δ) and Q0(t, Δ) by L0(t), D0(t), F0(t) and 
Q0(t). Now it suffices to prove the lemma for two cases.

Case 1: The boundary ΓB and the right edge Γv of Δ intersect at the point (z(τ1), τ1) for some τ1 ∈
[t0, t0 + b−a

2 ], see Fig. 4.
Then IΔ = [t0, τ1], za(t) = z(t). For t ∈ [t0, τ1], by Lemma 2.2, we use (2.1), (2.2) to get

d

dt
L(t, u,Δ) ≤

b−t+t0∫
z(t)

(
− (|u(x, t)|2)x + r0(x, t)

)
dx

−|u(b− t + t0, t)|2 − zt(t)|u(z(t), t)|2

≤ (1 − zt(t))|u(z(t), t)|2 +
b−t+t0∫
z(t)

r0(x, t)dx,

and
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d

dt
L(t, v,Δ) ≤

b−t+t0∫
z(t)

(
(|v(x, t)|2)x + r0(x, t)

)
dx

−|v(b− t + t0, t)|2 − zt(t)|v(z(t), t)|2

≤ −(1 + zt(t))|v(z(t), t)|2 +
b−t+t0∫
z(t)

r0(x, t)dx,

which lead to

d

dt

(
L(t, u,Δ) + K0L(t, v,Δ)

)
≤

(
(1 − zt(t))|λ(t)|2 −K0(1 + zt(t))

)
|v(z(t), t)|2

+(1 + K0)
b−t+t0∫
z(t)

r0(x, t)dx

≤ −2|v(z(t), t)|2 + (1 + K0)
b−t+t0∫
z(t)

r0(x, t)dx

≤ −2|v(z(t), t)|2 + O(1)(L0(t) + D0(t)),

where we choose K0 > 1 large enough so that

(1 − zt(t))|λ(t)|2 −K0(1 + zt(t)) < −2 (3.5)

for t ∈ [0, T ].
On the other hand, by Lemma 2.2, we use (2.1), (2.2) again to get the following for Q0,

d

dt
Q0(t) =

∫∫
z(t)<x<y<b−t+t0

(
(|u(x, t)|2)t|v(y, t)|2 + |u(x, t)|2(|v(y, t)|2)t

)
dxdy

+
( d

dt

∫∫
za(t)<x<y<b−t+t0

|u(x, s)|2|v(y, s)|2dxdy
)∣∣

s=t

≤
b−t+t0∫
z(t)

(|u(z(t), t)|2 − |u(y, t)|2)|v(y, t)|2dy

+
b−t+t0∫
z(t)

|u(x, t)|2(|v(b− t + t0, t)|2 − |v(x, t)|2)dx

+
b−t+t0∫
z(t)

r0(x, t)dx
b−t+t0∫
z(t)

(|u(y, t)|2 + |v(y, t)|2)dy

−zt(t)
b−t+t0∫

|u(z(t), t)|2|v(y, t)|2dy

z(t)
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−
b−t+t0∫
z(t)

|u(x, t)|2|v(b− t + t0, t)|2dx

≤ (−2 + O(1)L0(t))
b−t+t0∫
z(t)

|u(x, t)|2|v(x, t)|2dx

+(1 − zt(t))|u(z(t), t)|2
b−t+t0∫
z(t)

|v(y, t)|2dy + O(1)(L0(t))2.

Therefore,

d

dt
F0(t) ≤ −D0(t)

(
(2 −O(1)L0(t))C0 −O(1)

)
−|v(z(t), t)|2

(
2 − C0(1 − zt(t))|λ(t)|2L0(t)

)
+L0(t)(O(1) + O(1)C0L0(t))

≤ −D0(t) − |v(z(t), t)|2 + O(1)L0(t)

≤ −D0(t) − |v(z(t), t)|2 + O(1)L0(t0),

where we choose constant C0 > 0 and δ0 such that L0(t0) ≤ δ0 and

(2 −O(1)δ0)C0 −O(1) ≥ 1,

2 − C0(1 − zt(t))|λ(t)|2δ0 ≥ 1

for t ∈ [0, T ]. Then (3.4) is proved for this case.
Case 2: The boundary ΓB and the right edge Γv of Δ intersect at the point (z(τ2), τ2) for some τ2 ∈

[t0, t0 + b−a
2 ], see Fig. 5. The proof of (3.4) can be carried out in the same way as in Case 1 for t 	= τ2. Thus 

the proof is complete. �
4. Estimates on the difference between the classical solutions

Let (u, v) ∈ C1(Ω) and (u′, v′) ∈ C1(Ω) be two classical solutions to (1.1) with (1.3). We consider the 
difference between these two solutions and denote

(U, V ) = (u− u′, v − v′).

Then,

Ut + Ux = imV − i(N1(u, v) −N1(u′, v′)),

Vt − Vx = imU − i(N2(u, v) −N2(u′, v′)),

which lead to

(|U |2)t + (|U |2)x = �2{imV U − i(N1(u, v) −N1(u′, v′))U}, (4.1)

(|V |2)t − (|V |2)x = �2{imUV − i(N2(u, v) −N2(u′, v′))V }. (4.2)

For the nonlinear terms in the right-hand side of (4.1) and (4.2), we have following by direct computations.
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Lemma 4.1. There exists a c∗ > 0 such that

|�2{imV U − i(N1(u, v) −N1(u′, v′))U}| ≤ r1(x, t)

and

|�2{imUV − i(N2(u, v) −N2(u′, v′))V }| ≤ r1(x, t),

where

r1(x, t) = m(|U(x, t)|2 + |V (x, t)|2) + c∗r2(x, x, t),

r2(x, y, t) = |U(x, t)|2
(
|v(y, t)|2 + |v′(y, t)|2

)
+

(
|u(x, t)|2 + |u′(x, t)|2

)
|V (y, t)|2.

To get the control on (U, V ) via (4.1) and (4.2), we introduce following functionals on Δ ∩ Ω for (U, V )
as in [25]. Here it is assumed that Δ ∩ Ω 	= ∅.

Definition 4.1. For Δ = Δ(a, b, t0) and K1 > 0, C1 > 0, define

L1(t,Δ) = L(t, U,Δ) + K1L(t, V,Δ),

D1(t,Δ) =
b−t+t0∫
za(t)

r2(x, x, t)dx,

Q1(t,Δ) =
∫∫

za(t)<x<y<b−t+t0

r2(x, y, t)dxdy

and

F1(t,Δ) = L1(t,Δ) + C1Q1(t,Δ)

for t ∈ IΔ. Here Δ ∩ Ω 	= ∅ with

za(t) = max{a + t− t0, z(t)};

L(t, U, Δ), L(t, V, Δ) and IΔ are given by Definition 3.1 in section 3.

In addition we use the notations in Definition 3.2 for (u, v), and use the following for (u′, v′),

L′
0(t,Δ) = L(t, u′,Δ) + L(t, v′,Δ)

and

D′
0(t,Δ) =

b−t+t0∫
za(t)

|u′(x, t)|2|v′(x, t)|2dx,

Q′
0(t,Δ) =

∫∫
za(t)<x<y<b−t+t0

|u′(x, t)|2|v′(y, t)|2dxdy

for t ∈ IΔ, and
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r′0(x, t) = m(|u′(x, t)|2 + |v′(x, t)|2) + 8|β||u′(x, t)|2|v′(x, t)|2.

Moreover, (2.1) and (2.2) still hold for both (u, v) and (u′, v′), and Lemmas in Section 3 also hold for these 
two solutions.

Now for any T > 0, we can have the estimates on F1 near the boundary ΓB as follows.

Lemma 4.2. Suppose that Δ ⊂ R1 × [0, T ] and Δ ∩ ΓB 	= ∅. Then, there exist constants δ0 > 0, K1 > 0 and 
C1 > 0 such that if L0(t0, Δ) ≤ δ0 and L′

0(t0, Δ) ≤ δ0 then there holds the following,

d

dt
F1(t,Δ) ≤ −D1(t,Δ) +

[
O(1) + C1Λ1(t,Δ) + C1Λ2(t)

]
F1(t,Δ) (4.3)

for t ∈ IΔ with z(t) 	= a + t − t0, where

Λ1(t,Δ) = 4mδ0 + 8|β|(D0(t,Δ) + D′
0(t,Δ)),

and

Λ2(t) =
{

(1 − zt(t))|λ(t)|2(|v(z(t), t)|2 + |v′(z(t), t)|2), if a + t− t0 ≤ z(t),
0, if a + t− t0 > z(t).

Here the constants K1 > 1, δ0 and C1 depend only on T .

Proof. It suffices to prove lemma for two cases.
Case 1: The boundary ΓB and the right edge of Δ intersec at some point (z(τ1), τ1), see Fig. 4. Then 

IΔ = [t0, τ1], and za(t) = z(t) for t ∈ IΔ.
For t ∈ (t0, τ1), by Lemma 2.2 and Lemma 4.1, we use (4.1) and (2.2) for both (u, v) and (u′, v′) to derive 

that

d

dt

∫∫
z(t)<x<y<b−t+t0

|U(x, t)|2(|v(y, t)|2 + |v′(y, t)|2)dxdy

≤ −
∫∫

z(t)<x<y<b−t+t0

(|U(x, t)|2)x(|v(y, t)|2 + |v′(y, t)|2)dxdy

+
∫∫

z(t)<x<y<b−t+t0

|U(x, t)|2(|v(y, t)|2 + |v′(y, t)|2)ydxdy

+
∫∫

z(t)<x<y<b−t+t0

r1(x, t)(|v(y, t)|2 + |v′(y, t)|2)dxdy

+
∫∫

z(t)<x<y<b−t+t0

|U(x, t)|2(r0(y, t) + r′0(y, t))dxdy

−
b−t+t0∫
z(t)

|U(x, t)|2(|v(b− t + t0, t)|2 + |v′(b− t + t0, t)|2)dx

−zt(t)
b−t+t0∫

|U(z(t), t)|2(|v(y, t)|2 + |v′(y, t)|2)dy

z(t)
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≤ −2
b−t+t0∫
z(t)

|U(y, t)|2
(
|v(y, t)|2 + |v′(y, t)|2

)
dy

+(1 − zt(t))|λ(t)|2|V (z(t), t)|2
b−t+t0∫
z(t)

(|v(y, t)|2 + |v′(y, t)|2)dy

+(mL1(t) + c∗D1(t))
b−t+t0∫
z(t)

(|v(y, t)|2 + |v′(y, t)|2)dy

+(mL0(t) + 8|β|D0(t) + mL′
0(t) + 8|β|D′

0(t))
b−t+t0∫
z(t)

|U(x, t)|2dx,

while by Lemma 2.2 and Lemma 4.1, we use (4.2) and (2.1) for both (u, v) and (u′, v′) to derive that

d

dt

∫∫
z(t)<x<y<b−t+t0

(|u(x, t)|2 + |u′(x, t)|2)|V (y, t)|2dxdy

≤ −
∫∫

z(t)<x<y<b−t+t0

(|u(x, t)|2 + |u′(x, t)|2)x|V (y, t)|2dxdy

+
∫∫

z(t)<x<y<b−t+t0

(|u(x, t)|2 + |u′(x, t)|2)(|V (y, t)|2)ydxdy

+
∫∫

z(t)<x<y<b−t+t0

(r0(x, t) + r′0(x, t))|V (y, t)|2dxdy

+
∫∫

z(t)<x<y<b−t+t0

(|u(x, t)|2 + |u′(x, t)|2)r1(y, t)dxdy

−zt(t)
b−t+t0∫
z(t)

(|u(z(t), t)|2 + |u′(z(t), t)|2)|V (y, t)|2dy

−
b−t+t0∫
z(t)

(|u(x, t)|2 + |u′(x, t)|2)|V (b− t + t0, t)|2dx

≤ −2
b−t+t0∫
z(t)

(|u(x, t)|2 + |u′(x, t)|2|V (x, t)|2)dx

+(1 − zt(t))(|u(z(t), t)|2 + |u′(z(t), t)|2)
b−t+t0∫
z(t)

|V (x, t)|2dx

+(mL1(t) + c∗D1(t))
b−t+t0∫

(|u(x, t)|2 + |u′(x, t)|2)dx

z(t)
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+(mL0(t) + 8|β|D0(t) + mL′
0(t) + 8|β|D′

0(t))
b−t+t0∫
z(t)

|V (x, t)|2dx.

Collecting these two inequalities, we have the estimates on Q1 as follows,

d

dt
Q1(t) ≤

[
− 2 + c∗(L0(t) + L′

0(t))
]
D1(t) + [q1(t) + q2(t)]L1(t)

+(1 − zt(t))|λ(t)|2|V (z(t), t)|2(L0(t) + L′
0(t)),

where

q1(t) = 2m(L0(t) + L′
0(t)) + 8|β|(D0(t) + D′

0(t)),

and

q2(t) = (1 − zt(t))|λ(t)|2(|v(z(t), t)|2 + |v′(z(t), t)|2).

For the functional L1, by (4.1) and by Lemma 4.1, we have

d

dt
L(t, U) ≤ −|U(b− t + t0, t)|2 − zt(t)|U(z(t), t)|2

−
b−t+t0∫
z(t)

(|U(x, t)|2)xdx +
b−t+t0∫
z(t)

r1(x, t)dx

≤ (1 − zt(t))|λ(t)|2|V (z(t), t)|2 +
b−t+t0∫
z(t)

r1(x, t)dx,

while by (4.2) and by Lemma 4.1, we have

d

dt
L(t, V ) ≤ −|V (b− t + t0, t)|2 − zt(t)|V (z(t), t)|2

+
b−t+t0∫
z(t)

(|V (x, t)|2)xdx +
b−t+t0∫
z(t)

r1(x, t)dx

≤ −(1 + zt(t))|V (z(t), t)|2 +
b−t+t0∫
z(t)

r1(x, t)dx.

Then we have the following estimate on L1,

d

dt

(
L(t, U) + K1L(t, V )

)
≤

[
(1 − zt(t))|λ(t)|2 −K1(1 + zt(t))

]
|V (z(t), t)|2

+(1 + K1)
b−t+t0∫
z(t)

r1(x, t)dx

≤ −2|V (z(t), t)|2 + (1 + K1)
(
mL1(t) + c∗D1(t)

)
.
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Here the constant K1 > 1 is chosen so that

max
t∈[0,T ]

[
(1 − zt(t))|λ(t)|2 −K1(1 + zt(t))

]
< −2.

Now, with the above estimates on Q1 and L1, we use Lemma 3.2 to derive the following,

d

dt
F1(t) ≤

{
(1 + K1)c∗ + [−2 + c∗(L0(t) + L′(t))]C1

}
D1(t)

+
[
− 2 + C1(1 − zt(t))|λ(t)|2(L0(t) + L′

0(t))
]
|V (z(t), t)|2

+
[
(1 + K1)m + C1(q1(t) + q2(t))

]
L1(t)

≤ −D1(t) +
[
(1 + K1)m + C1(Λ1(t) + Λ2(t))

]
L1(t)

for L0(t0) ≤ δ0 and L′
0(t0) ≤ δ0, where we choose δ0 > 0 and C1 > 0 so that

−2 + 2c∗δ0 < −1, (1 + K1)c∗ − C1 < −1,

and

−2 + 2C1δ0 max
0≤t≤T

(1 − zt(t))|λ(t)|2 < −1.

Therefore (4.3) is proved for Case 1.
Case 2: The boundary ΓB and the left edge of Δ intersect at (z(τ2), τ2). Then, IΔ = [t0, t0 + b−a

2 ], and 
za(t) = z(t) for t0 ≤ t ≤ τ2, za(t) = a − t0 + t for τ2 ≤ t ≤ t0 + b−a

2 . The proof can be carried out in the 
same way as in Case 1 for t 	= τ2. Thus the proof is complete. �
Remark 4.1. For the case that Δ ⊂ Ω(T ), we have similar estimates on F1 without boundary terms, see [25]
for the proof, where only D1(t, Δ) makes contribution to the control on F1. For the case that Δ ∩ ΓB 	= ∅, 
both Q1(t, Δ) and L(t, V, Δ) are needed to give the control on F1.

As conclusion of the above argument, we get the stability result for smooth solutions for any T > 0.

Proposition 4.1. Suppose that Δ ⊂ R1 × [0, T ] with b > z(t0), and suppose that L0(t0, Δ) ≤ δ0, L′
0(t0, Δ) ≤

δ0. Then for t ∈ IΔ, there holds the following

b+t0−t∫
za(t)

(|u(x, t) − u′(x, t)|2 + |v(x, t) − v′(x, t)|2)dx

≤ C4

b∫
max{z(t0),a}

(|u(x, t0) − u′(x, t0)|2 + |v(x, t0) − v′(x, t0)|2)dx,

and ∫∫
Δ∩Ω

(|uv − u′v′|2)dxdt

≤ C4

b∫
(|u(x, t0) − u′(x, t0)|2 + |v(x, t0) − v′(x, t0)|2)dx,
max{z(t0),a}
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∫∫
Δ∩Ω

(|uv − u′v′|2)dxdt

≤ C4

b∫
max{z(t0),a}

(|u(x, t0) − u′(x, t0)|2 + |v(x, t0) − v′(x, t0)|2)dx.

Here the constant C4 depends only on T and E0.

Proof. It suffices to prove lemma for two cases.
Case 1: a < z(t0) < b, that is, Δ ∩ ΓB 	= ∅. Then taking the integral of (3.4) in Lemma 3.4 over IΔ, we 

have ∫
IΔ

(
D0(t,Δ) + D′

0(t,Δ) + |v(za(t), t)|2 + |v′(za(t), t)|2
)
dt

≤ O(1)(L0(t0,Δ) + L′
0(t0,Δ)) + O(1)δ0T,

which leads to ∫
IΔ

(
Λ1(t,Δ) + Λ2(t,Δ)

)
dt ≤ C(T )

for some constant C(T ) > 0 depending on T .
Therefore, we use Lemma 4.2 to deduce that

F1(t) ≤ exp(
∫
IΔ

[O(1) + C1Λ1(s,Δ) + C1Λ2(s,Δ)]ds)F1(t0)

≤ C ′(T )
b∫

z(t0)

(|u(x, t0) − u′(x, t0)|2 + |v(x, t0) − v′(x, t0)|2)dx

for t ∈ IΔ, and ∫
IΔ

D1(t,Δ)dt ≤ F1(t0)

+ (
∫
IΔ

[O(1) + C1Λ1(s,Δ) + C1Λ2(s,Δ)]ds)T max
t0≤t≤t0+ b−a

2

F1(t)

≤ F1(t0) + C ′′(T ) max
t0≤t≤t0+ b−a

2

F1(t),

which lead to the result for Case 1. Here the constants C ′(T ) and C ′′(T ) depend only on T .
Case 2: z(t0) < a, that is, Δ ∩ ΓB = ∅ and Δ ⊂ Ω(T ). Then za(t) = a + t − t0. The result for this case 

has been proved in [25], and its proof can be carried out in the same way as above. Therefore the proof is 
complete. �
5. Convergence of global classical solutions

Choose a sequence of smooth functions

(u(k)
0 , v

(k)
0 ) ∈ C∞

c (0,∞), k = 1, 2, ·,
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such that

(u(k)
0 , v

(k)
0 ) → (u0, v0) in L2

loc(0,∞)

as m → ∞. Theorem 1.1 implies that there is a sequence of classical solutions, (u(k), v(k)) ∈ C1(Ω), 
k = 1, 2, · · · , to (1.1), which satisfy boundary condition (1.3) and take (u(k)

0 , v(k)
0 ) as their initial data 

respectively. And supp(u(k)(·, t), v(k)(·, t)) has bounded support in R1 for any t ≥ 0 and k ≥ 0.
We consider the convergence of {(u(k), v(k))}∞k=0 on Δ(−A, A, 0) ∩Ω for any A > 0. To this end, we first 

give the estimate on L2 norm of solution over small interval [a, b] ∩ [z(t), A − t] for any a and b.

Lemma 5.1. There is a constant r > 0 such that if 0 < b − a ≤ 4r and b ≤ A then

sup
k≥1

min{b,A−t}∫
max{z(t),a}

(|u(k)(x, t)|2 + |v(k)(x, t)|2)dx ≤ δ0

for t ∈ [0, A] with z(t) ≤ b.

Proof. It is obvious that

lim
k→∞

A∫
0

(|u(k)
0 − u0|2 + |v(k)

0 − v0|2)dx = 0.

As in [25], we choose r > 0 such that

exp(mA + 8|β|j0)
( b∫
max{z(0),a}

(|u(k)
0 (x)|2 + |v(k)

0 (x)|2)dx + mj0(b− a)
)
≤ δ0

8

and

exp(2mA + 16|β|j0)
( b∫
max{z(0),a}

|v(k)
0 (2p(x) + x)|2dx + mj0(b− a)

)
≤ δ0

8

for |b − a| ≤ 4r and for k = 0, 1, 2 · · · . Here for simplification (u(0)
0 , v(0)

0 ) = (u0, v0).
Then with the pointwise estimates along the characteristics in Lemma 2.6 and Lemma 2.8, we can deduce 

the desired result. The proof is complete. �
Now application of Proposition 4.1 and Lemma 5.1 to any pair of smooth solutions (u(k), v(k)) and 

(u(n), v(n)) gives the following.

Lemma 5.2. Suppose that Δ(a, b, τ) ⊂ Δ(−A, A, 0) with 0 < b − a ≤ 4r and Δ(a, b, τ) ∩ Ω 	= ∅. Then there 
exists a constant C(A) > 0 such that

∫∫
Δ(a,b,τ)∩Ω

(|u(k) − u(n)|2 + |v(k) − v(n)|2)dxdt

+
∫∫

(|u(k)v(k) − u(n)v(n)|2 + |u(k)v(k) − u(n)v(n)|2)dxdt

Δ(a,b,τ)∩Ω
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Fig. 6. Domain Ω(A, τ).

≤ C(A)
b∫

max(z(0),a)

(|u(k)(x, τ) − u(n)(x, τ)|2 + |v(k)(x, τ) − v(n)(x, τ)|2)dx

for any k ≥ 1 and n ≥ 1. Here the constant C(A) depends only on A and E0; the constant r > 0 is given 
by Lemma 5.1.

In the next, we prove the convergence of {(u(k), v(k))}∞k=0 on Δ(−A, A, 0) ∩ Ω by the induction step as 
follows.

Denote (see Fig. 6)

Ω(A, τ) = Δ(−A,A, 0) ∩ Ω ∩ {(x, t) | 0 ≤ t ≤ τ}, 0 ≤ τ ≤ A.

Lemma 5.3. Suppose that

lim
m,n→∞

∫∫
Ω(A,τ)

(|u(m) − u(n)|2 + |v(m) − v(n)|2)dxdt = 0,

lim
m,n→∞

∫∫
Ω(A,τ)

(|u(m)v(m) − u(n)v(n)|2)dxdt = 0

and

lim
m,n→∞

∫∫
Ω(A,τ)

(|u(m)v(m) − u(n)v(n)|2)dxdt = 0

for τ ∈ [0, A − r]. Then

lim
m,n→∞

∫∫
Ω(A,τ+r)

(|u(m) − u(n)|2 + |v(m) − v(n)|2)dxdt = 0,

lim
m,n→∞

∫∫
Ω(A,τ+r)

(|u(m)v(m) − u(n)v(n)|2)dxdt = 0

and
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lim
m,n→∞

∫∫
Ω(A,τ+r)

(|u(m)v(m) − u(n)v(n)|2)dxdt = 0.

Here r is given in Lemma 5.1.

Proof. We choose a finite number of subintervals, [aj, bj ], j = 1, 2, · · · , J , with [aj , bj ] ∩[max{τ−A, z(τ)}, A −
τ ] 	= ∅ and bj − aj = 4r, such that

Ω(A, τ + r)\Ω(A, τ) ⊂ ∪J
j=1Δ(aj , bj , τ ′),

where τ ′ = τ − r
8 , and J ≤ 4A

r + 1.
For 1 ≤ j ≤ J , by Proposition 4.1 and Lemma 5.1, we have

lim
m,n→∞

∫∫
Δ(aj ,bj ,τ ′)∩Ω

(|u(m) − u(n)|2 + |v(m) − v(n)|2)dxdt = 0,

lim
m,n→∞

∫∫
Δ(aj ,bj ,τ ′)∩Ω

(|u(m)v(m) − u(n)v(n)|2)dxdt = 0

and

lim
m,n→∞

∫∫
Δ(aj ,bj ,τ ′)∩Ω

(|u(m)v(m) − u(n)v(n)|2)dxdt = 0.

Therefore we have the convergence of the sequences {(u(m), v(m))}∞m=1, {u(m)v(m)}∞m=1 and {u(m)v(m)}∞m=1
in L2(Ω(A, τ + r)) respectively. The proof is complete. �

Now we have the following convergence result.

Proposition 5.1. There exists a (u, v) ∈ L2
loc(Ω) such that

lim
m→∞

||(u(m), v(m)) − (u, v)||L2(Δ(−A,A,0)∩Ω) = 0,

and

lim
m→∞

(
||u(m)v(m) − uv||L2(Δ(−A,A,0)∩Ω) + ||u(m)v(m) − uv||L2(Δ(−A,A,0)∩Ω)

)
= 0

for any A > 0.

Proof. With the induction steps given by Lemma 5.3, we have

lim
m,n→∞

∫∫
(Δ(−A,A,0)∩Ω)

(|u(m) − u(n)|2 + |v(m) − v(n)|2)dxdt = 0,

lim
m,n→∞

∫∫
(Δ(−A,A,0)∩Ω)

(|u(m)v(m) − u(n)v(n)|2)dxdt = 0

and
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lim
m,n→∞

∫∫
(Δ(−A,A,0)∩Ω)

(|u(m)v(m) − u(n)v(n)|2)dxdt = 0,

for any A > 0. These lead to the desired result. The proof is complete. �
6. Proof of main results on strong solutions

In the same way as in the proof of Lemma 5.3 and Proposition 5.1, we can prove the following.

Proposition 6.1. Suppose that {u(m)
j , v(m)

j }∞m=1, j = 1, 2, are two sequences of classical solution to (1.1)
satisfy boundary condition (1.3) with the following,

lim
m→∞

M∫
0

(|u(m)
1 (x, 0) − u

(m)
2 (x, 0)|2 + |v(m)

1 (x, 0) − v
(m)
2 (x, 0)|2)dx = 0

for some M > 0. Then,

lim
m→∞

∫∫
Δ(−M,M,0)∩Ω

(|u(m)
1 − u

(m)
2 |2 + |v(m)

1 − v
(m)
2 |2)dxdt = 0.

Proof of Theorem 1.3. The existence of solution (u, v) is proved by Proposition 5.1. Moreover, (u, v) satisfies 
(1.9) and (2.6).

To prove the uniqueness, let (uj, vj), j = 1, 2, be two strong solutions to (1.1)-(1.3), and let (u(m)
j , v(m)

j ), 
j = 1, 2 be two sequences of classical solutions to (1.1) with boundary condition (1.3), which are convergent 
to (uj , vj), j = 1, 2, respectively in L2

loc(Ω). Moreover, the initial data (u(m)
j (x, 0), v(m)

j (x, 0)) are assumed 
to be convergent to (u0, v0) for j = 1, 2.

Then by Proposition 6.1, we have

lim
m→∞

∫∫
Δ(−A,A,0)∩Ω

(|u(m)
1 (x, 0) − u

(m)
2 (x, 0)|2 + |v(m)

1 (x, 0) − v
(m)
2 (x, 0)|2)dx = 0,

which yields that

(u1, v1)(x, t) = (u2, v2)(x, t), a.e. (x, t) ∈ Δ(−A,A, 0) ∩ Ω.

This leads to the uniqueness of the strong solution. The proof is complete. �
Proof of Theorem 1.4. Indeed the results hold for the classical solutions. Then by taking the limit, we can 
prove the result still hold for the strong solution. The proof is complete. �
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