期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:263
Effective nonlinear Neumann boundary conditions for 1D nonconvex Hamilton-Jacobi equations
Article
Guerand, Jessica1 
[1] PSL Res Univ, Dept Math & Applicat, Ecole Normale Super, CNRS, 45 Rue Ulm, F-75005 Paris, France
关键词: Hamilton-Jacobi equations;    Nonconvex Hamiltonians;    Discontinuous Hamiltonians;    Viscosity solutions;    Comparison principle;    Effective boundary conditions;   
DOI  :  10.1016/j.jde.2017.04.015
来源: Elsevier
PDF
【 摘 要 】

We study Hamilton-Jacobi equations in [0, +infinity) of evolution type with nonlinear Neumann boundary conditions in the case where the Hamiltonian is not necessarily convex with respect to the gradient variable. In this paper, we give two main results. First, we prove for a nonconvex and coercive Hamiltonian that general boundary conditions in a relaxed sense are equivalent to effective ones in a strong sense. Here, we exhibit the effective boundary conditions while for a quasi-convex Hamiltonian, we already know them (Imbert and Monneau, 2016). Second, we give a comparison principle for a nonconvex and nonnecessarily coercive Hamiltonian where the boundary condition can have constant parts. (C) 2017 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2017_04_015.pdf 1548KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次