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Abstract

We study Hamilton–Jacobi equations in [0, +∞) of evolution type with nonlinear Neumann boundary 
conditions in the case where the Hamiltonian is not necessarily convex with respect to the gradient variable. 
In this paper, we give two main results. First, we prove for a nonconvex and coercive Hamiltonian that 
general boundary conditions in a relaxed sense are equivalent to effective ones in a strong sense. Here, 
we exhibit the effective boundary conditions while for a quasi-convex Hamiltonian, we already know them 
(Imbert and Monneau, 2016). Second, we give a comparison principle for a nonconvex and nonnecessarily
coercive Hamiltonian where the boundary condition can have constant parts.
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1. Introduction

Let us consider the following Hamilton–Jacobi equation in (0, T ) × [0, +∞), where T > 0

{
ut + H(ux) = 0 for t ∈ (0, T ) and x > 0
ut + F(ux) = 0 for t ∈ (0, T ) and x = 0

(1)
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subject to the initial condition

u(0, x) = u0(x) for x ≥ 0. (2)

1.1. Main theorems

In order to state our first main theorem, we first define strong boundary nonlinearities associ-
ated to a Hamiltonian.

Definition 1.1 (Strong boundary nonlinearity). Let H :R → R be continuous and coercive, i.e.,

lim|p|→+∞H(p) = +∞. (3)

A function F : R → R is called a strong boundary nonlinearity for H , if F is continuous, non-
increasing and semi-coercive, i.e.,

lim
p→−∞F(p) = +∞, (4)

and satisfies

F(p0) �= H(p0) =⇒ F = F(p0) on a neighborhood of p0.

Remark 1.2. The hypothesis “F is non-increasing” is necessary for the maximum principle to 
hold true.

Our first main theorem is about exhibiting equivalent classes of boundary conditions and a 
representative for each class, the effective boundary condition. These effective boundary condi-
tions are exactly the strong boundary nonlinearities and are the only one to be satisfied in a strong 
sense.

Theorem 1.3 (Effective boundary conditions). Assume that the Hamiltonian H : R → R is 
continuous and coercive (3) and the function F : R →R is continuous, non-increasing and semi-
coercive (4). Then there exists a unique strong boundary nonlinearity Feff such that a function u
is a viscosity solution of (1) with F if and only if u is a strong viscosity solution of (1) with Feff.

Remark 1.4. The definition of viscosity solutions and strong viscosity solutions are given in 
section 2. Precisely in the theorem, for u a viscosity solution of

ut + H(ux) = 0 in (0, T ) × (0,+∞),

u satisfies at the boundary (i.e., at x = 0) the following inequalities in the viscosity sense (relaxed 
sense)

ut + min(H(ux),F (ux)) ≤ 0,

and
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ut + max(H(ux),F (ux)) ≥ 0,

if and only if u satisfies at the boundary the following equality in the viscosity sense (strong 
sense)

ut + Feff(ux) = 0.

Remark 1.5. Many functions F are associated to the same Feff. Precisely, only the Hamiltonian 
H and few points of the function F characterize the effective Feff. The set of these points is 
referred to as the set of effective points and we define it in section 3.

Remark 1.6. This theorem is the nonconvex counterpart of [16]. Monneau [23] is developing 
independently a different approach for multi-dimensional junctions [17].

To understand what the set of effective points is, we comment it on an example, see Fig. 1. In 
the general case, Feff is a non-increasing function which is “almost” the function H where each 
non-decreasing part is replaced by the “right constant”. In the particular case of Fig. 1, the “right 
constants” are given by the intersections of F and the non-decreasing parts of H . So here the 
set of effective points associated to F is AF = {p1, p2, p3} and the constants are Ai = H(pi)

for i = 1, 2, 3. Theorem 1.3 implies here that taking another function F̃ instead of F having the 
same intersection with the non-decreasing parts of H gives the same viscosity solutions of (1). In 
other words, all these boundary conditions with F, F̃ and Feff are in the same equivalence class.

Remark 1.7. In fact, we prove a more general result in section 3 (see Proposition 3.23). Theo-
rem 1.3 is true if F is only continuous and non-increasing i.e., not necessarily semi-coercive (4), 
providing that the solution satisfies the “weak continuity” condition (12). Assuming that F is 
semi-coercive (4) implies that the solution satisfies (12), see Lemma 2.5. Without the “weak 
continuity” condition, Theorem 1.3 does not hold true. Indeed, let

u(t, x) =
{

1 if x = 0
0 elsewhere.

The function u does not satisfy (12). It is a viscosity solution of (1) with H(p) = |p| and F(p) =
0 but it is not a strong viscosity solution of the corresponding (1) with Feff (see section 3 for the 
construction of Feff), here

Feff(p) =
{ −p if x < 0

0 if x ≥ 0.

Our second main result deals with comparison principles.

Theorem 1.8 (Comparison principles). Assume that the Hamiltonian H : R → R is continuous, 
the function F :R → R is continuous, non-increasing and semi-coercive (4) and the initial datum 
u0 is uniformly continuous. Moreover, assume that we have one of the following assumptions,
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Fig. 1. Illustration of a function Feff associated to F and F̃ in Theorem 1.3.

1. (a noncoercive H and a “coercive” F )

lim
p→+∞F(p) = −∞, (5)

2. (a coercive H and a semi-coercive F )

lim|p|→+∞H(p) = +∞.

Then for all viscosity sub-solution u and viscosity super-solution v of (1)–(2) satisfying for 
some T > 0 and CT > 0,

u(t, x) ≤ CT (1 + x), v(t, x) ≥ −CT (1 + x), ∀(t, x) ∈ (0, T ) × [0,+∞),

we have

u ≤ v in [0, T ) × [0,+∞).

Remark 1.9. In fact, we have u∗ ≤ v∗ (see section 2) but since u ≤ u∗ and v∗ ≤ v, we get 
u ≤ v. So in all the following proofs, we assume that u is upper semi-continuous and v is lower 
semi-continuous.

Remark 1.10. As for Theorem 1.3, we can prove a more general result for the second part of the 
theorem. The second part is true if F is only continuous and non-increasing i.e., not necessarily 
semi-coercive (4) providing that sub-solutions satisfy (12).

As far as existence results are concerned, the proof of [16, Theorem 2.14] prove also the 
existence of a solution in our case, for a nonconvex and noncoercive Hamiltonian.

1.2. Comparison with known results

First we review known results about comparison principles. There exist many results for 
Hamilton–Jacobi equations with boundary conditions of Neumann type. In [21], the author stud-
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ies the case of linear Neumann boundary condition. For first-order Hamilton–Jacobi equations, 
Barles and Lions prove a comparison principle result in [7] under a nondegeneracy condition on 
the boundary nonlinearity (see (6) below). The second-order case was treated by Ishii and Bar-
les in [19,6,8]. More precisely, Barles proves in [8] a comparison principle for fully nonlinear
second order, degenerate, parabolic equations, in a smooth subset � of RN , i.e.,

ut + H(x,u,Du,D2u) = 0 in �,

with a nonlinear Neumann boundary condition satisfying the same nondegeneracy as in [7] where 
it is studied for,

ut + F(x,u,Du) = 0 in ∂�.

In this paper, we restrict ourselves to the case where H and F only depends on the gradient 
variable. In [8,7], considering only the gradient variable dependence, the boundary condition 
satisfies

F(p − λ) − F(p) ≥ Cλ, for λ > 0. (6)

Here we assume a more general boundary condition, F is non-increasing, possibly with constant 
parts, and satisfies

lim
p→−∞F(p) = +∞ and lim

p→+∞F(p) = −∞. (7)

For example, the function F(p) = −argsh(p) does not satisfy the first condition but satisfies the 
second one. Moreover, condition (6) is too restrictive to modify F to make it non-increasing by 
a density argument as in Theorem 4.1.

Dealing with convex Hamiltonians, Soner [24] and Ishii and Koike [20] prove a comparison 
principle for state constraint problems. For a quasi-convex Hamiltonian H , in [16] the authors 
prove that the following state constraint problem,

ut + H(ux) = 0 in (0, T ) × (0,+∞)

ut + H(ux) ≥ 0 in (0, T ) × {0}, (8)

is equivalent to

ut + H(ux) = 0 in (0, T ) × (0,+∞)

ut + H−(ux) = 0 in (0, T ) × {0}, (9)

where H− is the decreasing part of the Hamiltonian defined by

H−(p) = inf
q≤p

H(q) (10)

(this definition is also valid for H nonconvex), see also [13] for the multidimensional case, and 
they prove a comparison principle for (9). More generally, they give a comparison principle 
for (1) with a quasi-convex H and F a non-increasing function. In [22], the authors deal with 
nonconvex coercive Hamiltonians on junctions. In particular, they prove a comparison principle 
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for (8) with H nonconvex. One can prove the equivalence between (8) and (9) for H nonconvex 
using the same methods as in [16,13] and results of this paper (see Appendix A). For a junction 
with many branches, one can get the same kind of equivalence of equations with the same tools. 
In this paper, still in the nonconvex case, we get a comparison principle for (9) which is equivalent 
to (8), and also more generally for (1) with F a non-increasing function (i.e., not only for F =
H−).

As far as effective boundary conditions are concerned, in a pioneer work Andreianov and Sbihi 
[3,2,4] are able to describe effective boundary conditions for scalar conservation laws. Concern-
ing the Hamilton–Jacobi framework, first results were obtained for quasi-convex Hamiltonians 
by Imbert and Monneau. They treat the problem on a junction with several branches in 1D [16]
and in the multi-dimensional case [17]. They prove that the effective boundary conditions are 
flux-limited ones

FA(p) = max(A,H−(p)), (11)

where H− is the non-increasing part of the Hamiltonian H defined in (10). Still in a quasi-convex 
framework, the authors in [18] exhibit effective boundary conditions for degenerate parabolic 
equations. The nonconvex case has been out of reach so far. In this paper, we describe effec-
tive boundary conditions for a nonconvex Hamiltonian in 1D on the half-line. Monneau [23]
mentioned to us that he developed a different approach dealing with N branches in the multi-
dimensional case.

After Imbert and Monneau [16,17], many papers deal with the flux-limited formulation (i.e., 
we take F = FA in (1)) and results associated to the reduction of the set of test functions. These 
problems show the relevance of considering a more general class of boundary conditions than the 
classical state constraint problem [24,20] (i.e. considering FA that is more general than H−). Ho-
mogenization results using the flux-limited formulation have been recently obtained in [12,11]. 
Moreover, there have been numerical results for a quasi-convex Hamiltonian and a flux-limited 
function at the junction point. There is a convergence result for a flux-limited function at the 
junction point in [9]. In [15], the authors find an error estimate of order �x

1
3 of the same scheme 

as in [9], and prove a convergence result for a general junction function at the junction point. This 
error estimate has been improved in [14] to order �x

1
2 . There are also applications in optimal 

control, for example in [1] where the authors study problem related to flux-limited functions.

1.3. Comments and difficulties

For the effective boundary condition result, the main difficulty was to find the good definition 
of strong boundary nonlinearity Feff for a nonconvex coercive Hamiltonian. In [16], for a quasi-
convex Hamiltonian, Imbert and Monneau prove that the effective boundary conditions are the 
flux-limited functions of the following form (see Fig. 2)

FA(p) = max(A,H−(p)),

which are also BLN flux functions (see [5]) defined as, for p0 ∈ R,

Fp0(p) =
⎧⎨
⎩

sup
q∈[p,p0]

H(q) if p ≤ p0

inf H(q) if p ≥ p0.

q∈[p0,p]
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Fig. 2. Illustration of the function FA in the convex case.

The BLN flux functions can be defined for nonconvex Hamiltonians. However, in the nonconvex 
case, BLN flux functions are effective boundary conditions but are not enough to cover all the 
effective boundary conditions as we see in section 3. For example, for an Hamiltonian with two 
minima (see Fig. 3), we need functions with two constant parts A1 and A2 like in Fig. 3, but this 
function is not a BLN flux function. However, it is locally a BLN function. In fact, it is exactly 
the “effective” boundary condition introduced in [3,2,4]. Since we only have a comparison result 
for the half line case, we only give the proof of the effective boundary condition result in this 
setting.

For the comparison principle, we tried to generalize the idea of Imbert and Monneau in [16] of 

the “vertex test function”. In their comparison principle, they replaced the classical term (x−y)2

2ε

by a function G called the “vertex test function” which satisfies (almost) the following condition

H(y,−Gy) ≤ H(x,Gx),

which gives a contradiction combining the two viscosity inequalities. But for nonconvex Hamil-
tonians even for a junction with only one branch, it is very difficult to find such a “vertex test 
function”. However, we follow the idea of coupling time and space in the doubling variable 
method in [10]. For example for the boundary condition F(p) = H(0, p) = −p, taking

(t − s)2

2δ
+ (t − s)

δ
(x − y) + (x − y)2

2δ
,

instead of the classical term

(t − s)2

2δ
+ (x − y)2

2δ
,

allows to get rid of the case x = 0 or y = 0 in the viscosity inequalities. In this paper, we give 
an example of such a function coupling time and space of the form δϕ

(
t−s
δ

,
x−y

δ

)
which solves 

the problem for all boundary conditions satisfying, F is non-increasing and satisfies (7). This 
approach does not seem to be adaptable for a junction with several branches, that is why, this 
paper is written only for a half-line domain.

1.4. Organization of the paper

In section 2, we give the definition of viscosity and strong viscosity solutions. In section 3, as 
in [16] for quasi-convex Hamiltonians, we prove first that boundary conditions can be reduced 
to the effective ones for a nonconvex coercive Hamiltonian. Precisely, we exhibit equivalent 
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Fig. 3. Illustration of a function FA in the nonconvex case.

classes for boundary conditions where the representative of the class is a strong boundary non-
linearity Feff. Moreover, we prove that for these effective boundary conditions (i.e., with Feff), 
viscosity solutions of (1) are solutions in a stronger sense: they are also strong viscosity solutions 
(see Definition 2.3), and this property is only true for these strong boundary nonlinearity Feff (see 
Lemmas 3.24 and 3.25). At the end of the section, we prove the associated comparison principle. 
In section 4, we prove a comparison principle for a nonconvex and noncoercive Hamiltonian 
where the boundary condition can have constant parts.

2. Viscosity solutions

In this section, we give the definitions of viscosity solutions and strong viscosity solutions and 
we recall that we have a weak continuity condition for sub-solutions when F is semi-coercive (4).

A test function is a C1 function φ : (0, T ) × [0, +∞) → R which touches a function u from 
below (resp. from above) at (t, x), i.e., u −φ reaches a local minimum (resp. maximum) at (t, x).

We recall the definition of upper and lower semi-continuous envelopes u∗ and u∗ of a (locally 
bounded) function u defined on [0, T ) × [0, +∞),

u∗(t, x) = lim sup
(s,y)→(t,x)

u(s, y) and u∗(t, x) = lim inf
(s,y)→(t,x)

u(s, y).

Definition 2.1 (Viscosity solutions). Let u : [0, T ) × [0, +∞) → R.

i) We say that u is a viscosity sub-solution (resp. viscosity super-solution) of (1) in (0, T ) ×
[0, +∞) if for all test function φ ∈ C1 touching u∗ (resp. u∗) from above (resp. from below) 
at (t0, x0), we have if x0 > 0,

φt (t0, x0) + H(φx(t0, x0)) ≤ 0 (resp. ≥ 0)

if x0 = 0,

either φt (t0,0) + H(φx(t0,0)) ≤ 0 (resp. ≥ 0)
or φt (t0,0) + F(φx(t0,0)) ≤ 0 (resp. ≥ 0).

ii) We say that u is a viscosity sub-solution (resp. viscosity super-solution) of (1)–(2) on [0, T ) ×
[0, +∞) if additionally

u∗(0, x) ≤ u0(x) (resp. u∗(0, x) ≥ u0(x)) ∀x ∈ [0,+∞).

iii) We say that u is a viscosity solution if u is both a viscosity sub-solution and super-solution.
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Remark 2.2. It is well-known that the boundary condition has to be considered in a relaxed 
sense, see [21,8].

Let us give the definition of strong viscosity solutions.

Definition 2.3 (Strong viscosity solutions). Let u : [0, T ) × [0, +∞) → R.

i) We say that u is a strong viscosity sub-solution (resp. strong viscosity super-solution) of (1)
in (0, T ) × [0, +∞) if for all test function φ ∈ C1 touching u∗ (resp. u∗) from above (resp. 
from below) at (t0, x0), we have if x0 > 0,

φt (t0, x0) + H(φx(t0, x0)) ≤ 0 (resp. ≥ 0)

if x0 = 0,

φt (t0,0) + F(φx(t0,0)) ≤ 0 (resp. ≥ 0).

ii) We say that u is a strong viscosity sub-solution (resp. strong viscosity super-solution) of 
(1)–(2) on [0, T ) × [0, +∞) if additionally

u∗(0, x) ≤ u0(x) (resp. u∗(0, x) ≥ u0(x)) ∀x ∈ [0,+∞).

iii) We say that u is a strong viscosity solution if u is both a strong viscosity sub-solution and a 
strong viscosity super-solution.

Remark 2.4. A strong viscosity sub-solution (resp. super-solution) is obviously a viscosity sub-
solution (resp. super-solution).

For the same reason as in [16], we need a weak continuity condition for sub-solutions to 
obtain the effective boundary condition result in section 3. More precisely, let us recall that any 
viscosity sub-solution satisfies automatically the “weak continuity” condition if the function F
is semi-coercive (4). In fact, we recall [16, Lemma 2.3] without proving it since the proof is the 
same in our case.

Lemma 2.5 (“Weak continuity” condition). Assume that the Hamiltonian H : R → R is con-
tinuous and coercive (3), the function F : R → R is continuous, non-increasing and semi-
coercive (4). Then any viscosity sub-solution u of (1) satisfies for all t ∈ (0, T )

u(t,0) = lim sup
(s,y)→(t,0),y>0

u(s, y). (12)

3. Effective boundary conditions

In this section, we see that only the Hamiltonian H and few points of the function F character-
ize the boundary conditions. First, we characterize strong boundary nonlinearities by exhibiting 
this important set of points, the set of effective points A. We obtain a result of reduction of the 
set of test functions as [16] for the strong boundary nonlinearities. Then we prove the effective 
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boundary condition theorem. Using the result of the fourth section, we prove that the viscosity 
solution of the problem (1)–(2) is unique.

In this section, the Hamiltonian H : R →R is assumed to be continuous and coercive (3).

3.1. Set of effective points

In this subsection, we exhibit a set of points which characterizes the strong boundary nonlin-
earities. This characterization is more practical for the following proofs. First, let us give some 
definitions and lemmas which are used to define this set.

3.1.1. Numbers p− and p+
Definition 3.1 (Numbers p− and p+). Let p ∈ R. We define

p− = sup {q < p | H(q) ≥ H(p)} ,

and

p+ = inf {q > p | H(q) ≤ H(p)} ,

with the convention inf∅ = +∞.

Remark 3.2. Since the Hamiltonian H is coercive, p− is the supremum of a nonempty set.

Remark 3.3. Notice that if H is non-increasing on [a, b], then for all p ∈ [a, b], p− = p = p+.

We deduce the following lemma from the definition.

Lemma 3.4. For all p ∈R, we have

H(p−) = H(p) = H(p+).

Moreover, we have

∀q ∈ ]p−,p[, H(q) < H(p), (13)

and

∀q ∈ ]p,p+[, H(q) > H(p). (14)

Proof of Lemma 3.4. The second part of the lemma is a consequence of the definition of p−
and p+. Let us prove the first part. By definition, we have H(p−) ≥ H(p) and for all q ∈
]p−, p[, H(q) < H(p). Sending q → p− and by continuity of H , we deduce H(p−) ≤ H(p)

so H(p−) = H(p). By the same arguments, we have H(p) = H(p+). �
In Fig. 4, the position of H compared to H(p) is illustrated.
Let us give the following useful lemma.
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Fig. 4. Illustration of p− and p+ in Definition 3.1.

Lemma 3.5. We have the following properties.

1. Assume ]p−, p[ ∩ ]q−, q[ �= ∅. We have H(p) ≤ H(q) if and only if [p−, p] ⊂ [q−, q] i.e., 
q− ≤ p− < p ≤ q .

2. Assume ]p, p+[ ∩ ]q, q+[ �= ∅. We have H(p) ≤ H(q) if and only if [q, q+] ⊂ [p, p+] i.e., 
p ≤ q < q+ ≤ p+.

3. If ]p−, p[ ∩ ]q, q+[ �= ∅, then H(p) > H(q).

Proof of Lemma 3.5. Let us prove the first point. The second point is very similar to the first 
one so we skip the proof. Assume that H(p) ≤ H(q). If by contradiction p > q , then since 
]p−, p[ ∩ ]q−, q[ �= ∅, we have p− < q < p. We deduce that

H(q) < H(p) ≤ H(q)

which gives a contradiction. So we deduce that p ≤ q . Moreover, since ]p−, p[ ∩ ]q−, q[ �= ∅, 
we have q− < p ≤ q . Assume by contradiction that p− < q−, then

H(p−) = H(p) ≤ H(q) = H(q−),

but q− ∈ ]p−, p[, which gives a contradiction with Lemma 3.4. So we deduce that [p−, p] ⊂
[q−, q]. Assume now that [p−, p] ⊂ [q−, q]. In particular we have p ∈ [q−, q], hence H(p) ≤
H(q).

Let us prove the third point. Assume that

]p−,p[ ∩ ]q, q+[ �= ∅, (15)

then we have q ≤ p. Necessarily by Lemma 3.4, we have H(p) ≥ H(q). If by contradiction, we 
have H(p) = H(q), then either q = p so q− = p− or q ≤ p− so q+ ≤ p−. But these two cases 
gives a contradiction with (15). So we deduce that H(p) > H(q). �
3.1.2. Set of effective points and A-strong boundary nonlinearity
Definition 3.6 (Set of effective points A). The set A is called a set of effective points if A is a set 
of points of R indexed by I , A = (pα)α∈I , such that

1. ∀α ∈ I , p−
α �= p+

α ,
2. for α1, α2 ∈ I , if pα1 < pα2 then H(pα1) ≥ H(pα2),
3. • ∀p ∈R such that p− < p, ∃α ∈ I such that ]p−, p[ ∩ ]p−

α , p+
α [ �= ∅,

• ∀p ∈R such that p < p+, ∃α ∈ I such that ]p, p+[ ∩ ]p−
α , p+

α [ �= ∅.

Remark 3.7. A is not empty since the Hamiltonian H is coercive.
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Fig. 5. Illustration of a function FA in Definition 3.9.

We deduce the following lemma which allows to define the A-strong boundary nonlinearity.

Lemma 3.8. If p1 < p2 and H(p1) ≥ H(p2) then we have ]p−
1 , p+

1 [ ∩ ]p−
2 , p+

2 [ = ∅. In partic-
ular, the intervals ]p−

α , p+
α [ for α ∈ I are disjoint and A is countable.

Proof of Lemma 3.8. This lemma is a direct consequence of Lemma 3.5. �
Now we can define the A-strong boundary nonlinearity which is a characterization of strong 

boundary nonlinearities associated to the parameter A.

Definition 3.9 (A-strong boundary nonlinearity FA). Let A be a set of effective points. The func-
tion FA : R →R defined by

FA(p) =
{

H(pα) if p ∈ [p−
α ,p+

α ], for α ∈ I

H(p) elsewhere

is called a A-strong boundary nonlinearity.

Proposition 3.10. The function FA is well-defined, continuous, non-increasing and semi-coercive 
(4). Moreover, FA is a strong boundary nonlinearity.

We give an example of a A-strong boundary nonlinearity in Fig. 5.

Proof of Proposition 3.10. Lemma 3.8 ensures that the function FA is well-defined and 
Lemma 3.4 ensures that FA is continuous. Let us prove that FA is non-increasing. Assume by 
contradiction that there exists p < q such that FA(p) < FA(q). Without loss of generality, we 
assume that p < q such that H(p) = FA(p) < FA(q) = H(q). Indeed, if we have p ∈ [p−

α , p+
α ]

for α ∈ I , we also have pα < q and H(pα) = FA(pα) = FA(p) < FA(q). We can use the same 
argument for q , if q ∈ [p−

α′ , p+
α′ ] for α′ ∈ I .

Let p1 = inf
{
r ≥ p | H(r) = H(p)+H(q)

2

}
and q1 = sup

{
r ≤ q | H(r) = H(p)+H(q)

2

}
. We 

have
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p−
1 < p < p1 ≤ q1 < q < q+

1 ,

and

H(p) < H(p1) = H(q1) < H(q). (16)

Using 3. of Definition 3.6, there exists α ∈ I such that

]p−
1 ,p1[ ∩ ]p−

α ,p+
α [ �= ∅.

We distinguish two cases.
If ]p−

1 , p1[ ∩ ]p−
α , pα[ �= ∅, then using 1. of Lemma 3.5, we deduce H(pα) < H(p1) and 

pα < p1. Indeed, if by contradiction we have H(pα) ≥ H(p1), then by 1. of Lemma 3.5, we 
deduce that p ∈ [p−

1 , p1] ⊂ [p−
α , pα]. Hence, we have

H(p) = FA(p) = FA(pα) = H(pα) ≥ H(p1),

which gives a contradiction with (16). We deduce that

H(pα) = FA(pα) < H(p1)

and [p−
α , pα] ⊂ [p−

1 , p1] with 1. of Lemma 3.5, hence pα < p1.
If ]p−

1 , p1[ ∩ ]pα, p+
α [ �= ∅, then pα < p1 and using 3. of Lemma 3.5, we deduce that

H(pα) = FA(pα) < H(p1).

By symmetric arguments, we also have α′ ∈ I such that

H(pα′) = FA(pα′) > H(q1),

and q1 < pα′ .
Combining these conclusions, we deduce that

pα < p1 < q1 < pα′ ,

and

H(pα) < H(p1) = H(q1) < H(pα′),

which gives a contradiction with 2. of Definition 3.6. We deduce that FA is non-increasing.
Assume by contradiction that FA is not semi-coercive. Since H is semi-coercive, it exists p

such that for all q < p, FA(q) < H(q). Let q1 < p then by definition of FA, it exists α ∈ I

such that q1 ∈ [pα, p+
α ] (since H is above FA in this set). But by definition of FA, we have 

FA(pα) = H(pα) and since pα < p we get a contradiction. So FA is semi-coercive.
Now by definition, FA is clearly a strong boundary nonlinearity. �

Lemma 3.11. Let A1 and A2 be two sets of effective points. If A1 �= A2 then FA �= FA .
1 2



JID:YJDEQ AID:8801 /FLA [m1+; v1.258; Prn:8/05/2017; 14:35] P.14 (1-39)

14 J. Guerand / J. Differential Equations ••• (••••) •••–•••
Proof of Lemma 3.11. Assume that pα1 ∈ A1 but pα1 /∈ A2. Then p−
α1

�= p+
α1

. By symme-
try, assume that p−

α1
< pα1 . By 3. of Definition 3.6, it exists pα2 ∈ A2 such that ]p−

α1
, pα1[ ∩

]p−
α2

, p+
α2

[ �= ∅. So we have two cases either ]p−
α1

, pα1 [ ∩ ]pα2, p
+
α2

[ �= ∅ or ]p−
α1

, pα1 [ ∩
]p−

α2
, pα2 [ �= ∅. In the first case, let p ∈ ]p−

α1
, pα1 [ ∩ ]pα2, p

+
α2

[. By 3. of Lemma 3.5, we de-
duce

FA1(p) = H(pα1) < H(pα2) = FA2(p).

So FA1 �= FA2 . In the second case, let p ∈ ]p−
α1

, pα1 [ ∩ ]p−
α2

, pα2[. Assume by contradiction that 
FA1(p) = FA2(p). Then

H(pα1) = FA1(pα1) = FA1(p) = FA2(p) = FA2(pα2) = H(pα2).

So by 1. of Lemma 3.5, necessarily pα1 = pα2 which gives a contradiction. We deduce that 
FA1 �= FA2 . �

Now let us prove the characterization of strong boundary nonlinearity with the set A: a strong 
boundary nonlinearity is in fact a A-strong boundary nonlinearity for some A.

Proposition 3.12. Let F be a strong boundary nonlinearity. There exists a unique set of effective 
points A such that, F = FA, i.e., F is a A-strong boundary nonlinearity.

Proof. The uniqueness is a direct consequence of Lemma 3.11. Let us define the following set

A = {
p ∈ R | F(p) = H(p) and p− �= p+}

.

Let us prove that

F(q) =
{

H(p) if q ∈ [p−,p+], for p ∈ A

H(q) elsewhere
(17)

before showing that A is a set of effective points.
First, we prove that for all p ∈ A, F is constant on [p−, p+]. Let p be in A. Since F is non-

increasing and H(p−) = H(p+) = H(p) = F(p), we only have to prove that F(p−) = H(p−)

and F(p+) = H(p+). By symmetry we only prove the first equality. Assume by contradiction 
that F(p−) �= H(p−). Then since F is non-increasing, necessarily F(p−) > F(p) = H(p−). 
Let p1 = inf

{
s > p− | F(s) < F(p−)

}
, then by continuity of F ,

F(p1) = F(p−) > F(p).

So p− < p1 < p and

F(p1) > F(p) = H(p) > H(p1).

But F is nonconstant on a neighborhood of p1, which gives a contradiction with Definition 1.1. 
We deduce that F is constant on [p−, p+].
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For q /∈ ⋃
p∈A

]p−, p+[, let us prove that F(q) = H(q). Let q /∈ ⋃
p∈A

]p−, p+[. Assume by con-

tradiction that F(q) �= H(q). By symmetry we assume that F(q) < H(q). We define

a = sup {s < q | F(s) = H(s)} ,

and

b = inf {s > q | F(s) = H(s)} .

Notice that a is finite but b can be +∞. Indeed, since F is semi-coercive (4), it cannot be constant 
on (−∞, q), so it exists q1 ∈ (−∞, q) such that F is not constant on a neighborhood of q1 and 
H(q1) = F(q1) by Definition 1.1 so a must be finite. Necessarily, F = F(q) < H on (a, b)

with F(a) = H(a) and a < q < a+ = b. So we have a ∈ A and q ∈ ⋃
p∈A

]p−, p+[ which gives a 

contradiction. So we deduce (17).
Now, let us prove that A is a set of effective points. It is clear that A satisfies 1. and 2. of Def-

inition 3.6 since F is non-increasing. Assume by contradiction that A does not satisfy 3. of Defi-
nition 3.6. Then it exists q such that ]q−, q[ ∩ ⋃

p∈A

]p−, p+[ = ∅ (or ]q, q+[ ∩ ⋃
p∈A

]p−, p+[ = ∅, 

by symmetry we only treat the first case). So F = H on ]q−, q[ by (17). For p ∈ ]q−, q[ we 
have F(p) = H(p) < H(q) = F(q), by continuity of F . But F is non-increasing which gives a 
contradiction. We deduce that A is a set of effective points. �
Remark 3.13. Since strong boundary nonlinearities and A-strong boundary nonlinearities are 
the same, we use A-strong boundary nonlinearities in the following subsections.

We give the following lemma which is useful for the next subsection.

Lemma 3.14. The function FA satisfies the following properties,

1. for α ∈ I , ∀p ∈ ]p−
α , pα[, FA(p) > H(p),

2. for α ∈ I , ∀p ∈ ]pα, p+
α [, FA(p) < H(p),

3. if p /∈ ⋃
α∈I

]p−
α , pα[ ∪ ]pα, p+

α [, then FA(p) = H(p).

Proof. This result is a direct consequence of Lemma 3.4 and Definition 3.9. �
3.2. Reducing the set of test functions

With this definition of FA, as in [16,17,13], we can prove a theorem for reducing the set of test 
functions for the A-strong boundary nonlinearity. We consider functions satisfying a Hamilton–
Jacobi equation in (0, +∞), solution of

ut + H(ux) = 0 for (t, x) ∈ (0, T ) × (0,+∞). (18)

Theorem 3.15 (Reduced set of test functions). Assume that the Hamiltonian H is continuous and 
coercive (3). Let A be a set of effective points. For all α ∈ A, let us fix any time independent test 
function φα(x) satisfying
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φ′
α(0) = pα.

Given a function u : (0, T ) × J → R, the following properties hold true.

i) If, for t0 ∈ (0, T ), u is an upper semi-continuous sub-solution of (18) and satisfies (12) at 
t = t0 and if for any test function ϕ touching u from above at (t0, 0) with

ϕ(t, x) = ψ(t) + φα(x) (19)

where ψ ∈ C1(0, +∞) and where α ∈ I is such that p−
α �= pα , we have

ϕt + FA(ϕx) ≤ 0 at (t0,0),

then u is a strong viscosity sub-solution at (t0, 0) for F = FA.
ii) If for t0 ∈ (0, T ), u is a lower semi-continuous super-solution of (18) and if for any test 

function ϕ touching u from below at (t0, 0) with

ϕ(t, x) = ψ(t) + φα(x)

where ψ ∈ C1(0, +∞) and where α ∈ I is such that pα �= p+
α , we have

ϕt + FA(ϕx) ≥ 0 at (t0,0),

then u is a strong viscosity super-solution at (t0, 0) for F = FA.

Remark 3.16. We only need to consider test functions satisfying p−
α �= pα (resp. pα �= p+

α ) for 
the sub-solution (resp. super-solution) case. Indeed in [pα, p+

α ] (resp. [p−
α , pα]), the function 

FA is lower (resp. upper) than H that gives directly the result, using the following Lemmas 
(see the following proof). We recover the result [16, Theorem 2.7 i)] for a quasi-convex Hamil-
tonian and for F = FA0 = H− the decreasing part of the Hamiltonian. In [16], π+(A) is the 
supremum of intersection points between A and the nondecreasing part of H . In this case, the 
set of effective points is A = {π+(A0)} where H(π+(A0)) = A0 the minimum of H , we have 
(π+(A0))

− = π+(A0). That is why the author doesn’t need any test function for this case in [16, 
Theorem 2.7 i)].

To prove this result, we need the two following lemmas already proven in [16,17,13]. Here 
we skip the proof on these lemmas.

Lemma 3.17 (Critical slope for sub-solution [16]). Let u be an upper semi-continuous sub-
solution of (18) which satisfies (12) and let ϕ be a test function touching u from above at some 
point (t0, 0) where t0 ∈ (0, T ). Then the critical slope given by

p̄ = inf {p ∈R : ∃r > 0, ϕ(t, x) + px ≥ u(t, x), ∀(t, x) ∈ (t0 − r, t0 + r) × [0, r)}

is finite, satisfies p̄ ≤ 0 and

ϕt (t0,0) + H(ϕx(t0,0) + p̄) ≤ 0.
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Remark 3.18. We need the “weak continuity” of sub-solutions to prove that p̄ is finite. And we 
need p̄ to be finite for the proof of Theorem 3.15.

Lemma 3.19 (Critical slope for super-solution [16]). Let u be a lower semi-continuous super-
solution of (18) and let ϕ be a test function touching u from below at some point (t0, 0) where 
t0 ∈ (0, T ). If the critical slope given by

p̄ = sup {p ∈ R : ∃r > 0, ϕ(t, x) + px ≤ u(t, x),∀(t, x) ∈ (t0 − r, t0 + r) × [0, r)}

is finite, then it satisfies p̄ ≥ 0 and we have

ϕt (t0,0) + H(ϕx(t0,0) + p̄) ≥ 0.

Proof of Proposition 3.15. We first prove the results concerning sub-solutions.

Sub-solution. Let φ be a test function touching u from above at (t0, 0) and let λ = −φt (t0, 0). 
Let p = φx(t0, 0). We want to show that

FA(p) ≤ λ. (20)

Notice that by Lemma 3.17, there exists p̄ ≤ 0 such that

H(p + p̄) ≤ λ.

Since FA is non-increasing, we have

FA(p) ≤ FA(p + p̄)

and using Lemma 3.14, if p + p̄ /∈ ⋃
α∈I

]p−
α , pα[ we have

FA(p) ≤ FA(p + p̄) ≤ H(p + p̄) ≤ λ,

which proves the result.
Now if p + p̄ ∈ ]p−

α , pα[ for some α ∈ I such that p−
α �= pα , then

p + p̄ < pα = φ′
α(0).

Let us consider the modified test function

ϕ(t, x) = φ(t,0) + φα(x) − φα(0).

We have

ϕ(t0,0) = φ(t0,0) = u(t0,0).

Let us show that

ϕ(t, x) ≥ u(t, x), (21)
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on a neighborhood of (t0, 0). We have

p + p̄ = φx(t0,0) + p̄ < φ′
α(0),

so there exist p1 and p2 such that p̄ < p1 < p2 and which satisfy

p + pi = φx(t0,0) + pi < φ′
α(0), ∀i ∈ {1,2}.

Since φx and φ′
α are continuous, on a neighborhood of (t0, 0), we have

φx(t, x) + pi < φ′
α(x), ∀i ∈ {1,2}.

So we have on a neighborhood of (t0, 0),

φ(t, x) = φ(t,0) +
x∫

0

φx(t, y)dy

= ϕ(t, x) + φα(0) − φα(x) +
x∫

0

φx(t, y)dy

= ϕ(t, x) +
x∫

0

(φx(t, y) − φ′
α(y))dy

≤ ϕ(t, x) − p2x,

and by definition of p̄, there exists a neighborhood (t0 − r, t0 + r) × [0, r) of (t0, 0), for some 
r > 0 such that

u(t, x) ≤ φ(t, x) + p1x

≤ ϕ(t, x) + (p1 − p2)x,

≤ ϕ(t, x)

so we get (21).
This test function satisfies in particular (19) so we deduce that

−λ + FA(pα) ≤ 0,

so we have since p + p̄ ∈ ]p−
α , pα[ and FA is constant in this interval,

FA(p) ≤ FA(p + p̄) = FA(pα) ≤ λ.

Therefore (20) holds true.
Let us prove now the super-solution case.

Super-solution. Let φ be a test function touching u from below at (t0, 0). Let λ = −φt (t0, 0), 
and p = φx(t0, 0). We want to show that

FA(p) ≥ λ. (22)
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By Lemma 3.19, if p̄ is finite, then p̄ ≥ 0 and

H(p + p̄) ≥ λ. (23)

If p̄ = +∞ then since H is coercive, the inequality (23) is true replacing p̄ with some large p̃. 
To simplify the notations, p̄ will denote the real number satisfying the inequality (23) in the first 
or the second case.

Since FA is non-increasing, we have

FA(p) ≥ FA(p + p̄)

and using Lemma 3.14, if p + p̄ /∈ ⋃
α∈I

]pα, p+
α [ we have

FA(p) ≥ FA(p + p̄) ≥ H(p + p̄) ≥ λ,

which prove the result. Now if p + p̄ ∈ ]pα, p+
α [ for some α ∈ I such that pα �= p+

α , then

p + p̄ > pα = φ′
α(0).

As for the sub-solution case, let us consider the modified test function

ϕ(t, x) = φ(t,0) + φα(x) − φα(0).

Arguing as in the subsolution case, we can show that ϕ touches u from below at (t0, 0).
This test function satisfies in particular (19) so we deduce that

−λ + FA(pα) ≥ 0,

so we have

FA(p + p̄) = FA(pα) ≥ λ.

Therefore (22) holds true. �
3.3. Proof of the effective boundary condition result

To prove Theorem 1.3, we first have to define the set of effective points AF associated to the 
function F : R → R continuous, non-increasing and semi-coercive (4). In fact, we don’t need 
F to be semi-coercive, if we assume that all sub-solutions satisfy (12), see Remark 1.7. So for 
Definition 3.20 and Proposition 3.21, which don’t involve solutions, we don’t assume that F is 
semi-coercive.

Definition 3.20 (Set of effective points AF ). The set of effective points AF is the set of points 
p ∈R such that either
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Fig. 6. Illustration of a function FAF
in Definition 3.20.

⎧⎪⎪⎨
⎪⎪⎩

(i) p− �= p,

(ii) F (p) ≥ H(p),

(iii) ∀q ∈ R such that F(q) ≥ H(q) and ]q−, q+[ ∩ ]p−,p[ �= ∅,

we have H(q) ≤ H(p),

(24)

or

⎧⎪⎪⎨
⎪⎪⎩

(i) p+ �= p,

(ii) F (p) ≤ H(p),

(iii) ∀q ∈ R such that F(q) ≤ H(q) and ]q−, q+[ ∩ ]p,p+[ �= ∅,

we have H(q) ≥ H(p).

(25)

Notice that since H is coercive, AF is not empty. We give an example of a AF -strong bound-
ary nonlinearity in Fig. 6. To illustrate the set AF , one can see that in the sets where F ≥ H , the 
points of AF satisfying (24) are local maximas of H . In the sets where F ≤ H , the points of AF

satisfying (25) are local minimas of H . The points of AF satisfying (24) and (25) are intersection 
points of F with non-decreasing part of H if H has a finite number of minimas (see Fig. 6). We 
now show that p− �= p or p+ �= p for p ∈ AF characterizes the fact that p satisfies (24) or (25).

Proposition 3.21. Let F : R → R be continuous, non-increasing, and AF be defined as in 
Definition 3.20, then AF is a set of effective points. Moreover AF satisfies the following prop-
erty. If p ∈ AF and p− �= p (resp. p+ �= p) then p satisfies (24) (resp. (25)). In particular, if 
p− < p < p+, then F(p) = H(p).
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Proof. Let us prove that AF is a set of effective points. The set AF satisfies 1. of Definition 3.6
since either p− �= p or p+ �= p. Let us prove that it satisfies 2. and 3. of Definition 3.6.

Step 1: AF satisfies 2. of Definition 3.6.
Assume by contradiction that there exist p1, p2 ∈ AF such that p1 < p2 and H(p1) < H(p2). 

We distinguish four cases.

Case 1: p1 satisfies (25), p2 satisfies (24)
We have

F(p1) ≤ H(p1) < H(p2) ≤ F(p2).

But F is non-increasing, so we get a contradiction and we have H(p1) ≥ H(p2).

Case 2: p1, p2 satisfy (24)
Let p = inf {q > p1 | H(q) ≥ H(p2)}. We have

p− < p−
1 < p1 < p ≤ p2

and

F(p) ≥ F(p2) ≥ H(p2) = H(p) > H(p1).

So p1 does not satisfy (24) (iii) with p, that gives a contradiction.

Case 3: p1, p2 satisfy (25)
Let p = sup {q < p2 | H(q) ≤ H(p1)}. By symmetry with case 2, we prove that p2 does not 

satisfy (25) (iii) and get a contradiction.

Case 4: p1 satisfies (24), p2 satisfies (25)
We have F(p1) ≥ H(p1) and F(p2) ≤ H(p2). Let us define

q1 = inf {q ≥ p1 | H(q) = F(q)} ,

r1 = inf {q ≥ p1 | H(q) = H(q1)} ,

and

q2 = sup {q ≤ p2 | H(q) = F(q)} ,

r2 = sup {q ≤ p2 | H(q) = H(q2)} .

Then if H(r1) = H(q1) > H(p1), we have

r−
1 < p−

1 < p1 < r1

and F(r1) ≥ F(q1) = H(q1) = H(r1). So p1 does not satisfy (24) (iii) with r1 that gives a 
contradiction. We deduce that H(q1) ≤ H(p1), so

H(r2) = H(q2) = F(q2) ≤ F(q1) = H(q1) ≤ H(p1) < H(p2)
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and we have

r2 < p2 < p+
2 < r+

2 ,

and F(r2) ≤ F(q2) = H(q2) = H(r2). So p2 does not satisfy (25) (iii) with r2 that gives a 
contradiction.

Step 2: AF satisfies 3. of Definition 3.6.
Let p ∈ R such that p− �= p+. We distinguish four cases.

Case 1: p− �= p and F(p) < H(p).

Let p1 = sup {q ≤ p | H(q) = F(q)} and p2 = sup

{
q ∈ [p1,p] | H(q) = min

s∈[p1,p]H(s)

}
.

The number p1 could be −∞ but since H is coercive, p2 < +∞.
We are going to prove that p2 ∈ AF and ]p−, p+[ ∩ ]p−

2 , p+
2 [ �= ∅. Observe first that p2

satisfies (25) (i), (ii). Let us prove that it satisfies (25) (iii). Assume by contradiction that there 
exists q ∈R such that

F(q) ≤ H(q), (26)

]q−, q+[ ∩ ]p2,p
+
2 [ �= ∅ (27)

and

H(q) < H(p2). (28)

We distinguish three possibilities for q . If q < p1 then using (26) and (28), we have F(q) <
H(p2) ≤ H(p1) ≤ F(p1), that gives a contradiction with the fact that F is non-increasing. If 
q ∈ [p1, p] then by definition of p2, H(p2) ≤ H(q) that gives a contradiction with (28). If 
q > p then using (28), we deduce that q− ≥ p+

2 that gives a contradiction with (27). We deduce 
that p2 ∈ AF . Moreover, p2 satisfies

]p−,p[ ∩ ]p−
2 ,p+

2 [ �= ∅. (29)

Indeed, we have for r ∈ ]p−, p[, H(r) < H(p) by Lemma 3.4, so H(p2) < H(p) and p2 <

p < p+
2 .

Case 2: p− �= p and F(p) ≥ H(p).

Let p1 = inf {q ≥ p | H(q) = F(q)} and p2 = inf

{
q ∈ [p,p1] | H(q) = max

s∈[p,p1]
H(s)

}
. We 

are going to prove that p2 ∈ AF and satisfies (29). We have

p−
2 ≤ p− < p ≤ p2 ≤ p1,

so we deduce that p2 satisfies (24) (i) and by definition, we deduce that p2 satisfies (24) (ii). Let 
us prove that it satisfies (24) (iii). Assume by contradiction that there exists q ∈ R such that

F(q) ≥ H(q), (30)

q satisfies
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]q−, q+[ ∩ ]p−
2 ,p2[ �= ∅ (31)

and

H(q) > H(p2). (32)

We distinguish three possibilities for q . If q > p1 then using (30) and (32), we have F(q) >
F(p1), that gives a contradiction with the fact that F is non-increasing. If q ∈ [p−, p1] then 
H(p2) ≥ H(q) that gives a contradiction with (32). If q < p− then q+ ≤ p−

2 that gives a contra-
diction with (31). We deduce that p2 ∈ AF and satisfies (29).

Case 3: p �= p+ and F(p) ≤ H(p).
Using the same arguments as in cases 1 and 2 with p1 = sup {q ≤ p | H(q) = F(q)} and 

p2 = sup

{
q ∈ [p1,p] | H(q) = min

s∈[p1,p]H(s)

}
, we deduce that p2 ∈ AF and satisfies

]p,p+[ ∩ ]p−
2 ,p+

2 [ �= ∅. (33)

Case 4: p �= p+ and F(p) > H(p).
Using the same arguments as in cases 1 and 2 with p1 = inf {q ≥ p | H(q) = F(q)} and p2 =

inf

{
q ∈ [p,p1] | H(q) = max

s∈[p,p1]
H(s)

}
, we deduce that p2 ∈ AF and satisfies (33).

Now let us prove the property of AF . We only prove the result for p+ �= p since it is very 
similar for p− �= p. If p satisfies (25), we are done. If p satisfies (24), let us prove that it also 
satisfies (25) in this case. By hypothesis, it satisfies (25) (i). Let us prove that it satisfies (25) (ii). 
Assume by contradiction that F(p) > H(p). Consider p2 defined in Step 2 Case 2. Then p2
gives a contradiction with (24) (iii), so p satisfies (25) (ii) and F(p) = H(p).

Now let us prove that p satisfies (25) (iii). Assume by contradiction that there exists q ∈ R

such that

]q−, q+[ ∪ ]p,p+[ �= ∅, (34)

F(q) ≤ H(q) (35)

and

H(q) < H(p). (36)

We have that (35), (36) implies H(p) = F(p) > H(q) ≥ F(q). So since F is non-increasing, we 
have q > p and Lemma 3.8 gives a contradiction with (34). We deduce the result. �

The next lemma shows that the set AF associated to the function F is uniquely determined.

Lemma 3.22. Let A1 and A2 be two sets of effective points. If

{
u | u solution of (1) with F = FA1

} = {
u | u solution of (1) with F = FA2

}
,

then
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A1 = A2.

Proof. Assume by contradiction that A1 �= A2. Then let pα1 ∈ A1 such that pα1 /∈ A2. By 3. of 
Definition 3.6, there exists pα2 ∈ A2 such that

]p−
α1

,p+
α1

[ ∩ ]p−
α2

,p+
α2

[ �= ∅. (37)

We have two cases, either p−
α1

∈ ]p−
α2

, p+
α2

[ or p−
α2

∈ ]p−
α1

, p+
α1

[. By symmetry, one can suppose 
that p−

α1
∈ ]p−

α2
, p+

α2
[. Consider u(t, x) = −H(p)t +px, with p = p−

α1
. For x > 0, the first equa-

tion in (1) is clearly satisfied. For x = 0, we notice that FA1(p) = H(pα1) by Definition 3.9
of FA1 . It follows that the second equation in (1) holds with F = FA1 . Therefore u is solu-
tion of (1) with F = FA1 . So by assumption, it is also solution of (1) with F = FA2 . Writing 
the second equation in (1) with F = FA2 , we deduce FA2(p) = H(p). And by Definition 3.9, 
FA2(p) = H(pα2) since p ∈ ]p−

α2
, p+

α2
[. It follows H(pα2) = H(p) = H(pα1). Necessarily, since 

pα1 �= pα2 , Lemma 3.8 gives a contradiction with (37). We deduce that A1 = A2. �
Now we can deduce the main Theorem 1.3 from the following proposition.

Proposition 3.23 (General Neumann boundaries reduce to strong boundary nonlinearities). 
Assume that the Hamiltonian H : R → R is continuous and coercive, the function F : R → R is 
continuous, non-increasing. Then there exists a set of effective points AF such that

• any viscosity super-solution of (1) with F is a strong viscosity super-solution of (1) with FAF
;

• any viscosity sub-solution of (1) with F such that for all T ∈ (0, T ) we have (12), is a strong 
viscosity sub-solution with FAF

;
• any strong viscosity sub-solution (resp. super-solution) of (1) with FAF

is a viscosity sub-
solution (resp. super-solution) of (1) with F .

Proof of Theorem 3.23. We first prove that viscosity sub-solutions satisfying (12) are strong 
viscosity sub-solutions. We only do the proof for sub-solutions since it is very similar for super-
solutions. Let u be a viscosity sub-solution. Thanks to Theorem 3.15, it is enough to show that 
for all ϕ touching u∗ from above at (t, 0) such that ϕx(t, 0) = p ∈ AF , and p− �= p, we have

ϕt (t,0) + H(p) ≤ 0.

Let ϕ be such a test function. Since u is a viscosity sub-solution, we have

ϕt + min(F (p),H(p)) ≤ 0.

Since p− �= p, Proposition 3.21 implies F(p) ≥ H(p) so we deduce the result.
The third point of the theorem is a direct consequence of the inequality

min(F,H) ≤ FAF
≤ max(F,H).

Indeed, if p ∈ [p−
α , pα] where pα ∈ AF and p−

α �= pα , using Proposition 3.21, and (24) (ii), we 
have
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F(p) ≥ F(pα) ≥ H(pα) = FAF
(p) ≥ H(p).

If p ∈ [pα, p+
α ] where pα ∈ AF and p+

α �= pα , using Proposition 3.21, and (25) (ii), we have

F(p) ≤ F(pα) ≤ H(pα) = FAF
(p) ≤ H(p).

If p /∈ ⋃
α∈I

[p−
α , p+

α ], then H(p) = FAF
(p). �

Proof of Theorem 1.3. Apply Proposition 3.23 and Lemma 3.22. �
Let us prove in two lemmas that for a A-strong boundary nonlinearity FA, viscosity solutions 

and strong viscosity solutions are the same and this property is only true for A-strong boundary 
nonlinearities.

Lemma 3.24. Let A be a set of effective points. The set of effective points AFA
associated to 

the strong boundary nonlinearity FA is the set A. In particular, a viscosity sub-solution (resp. 
super-solution) of (1) for F = FA is a strong viscosity sub-solution (resp. super-solution) for 
F = FA.

Proof of Lemma 3.24. Let us prove that A ⊂ AFA
. Let p ∈ A. Without loss of generality, assume 

that p− �= p, so p satisfies (i) of Definition 3.20. By definition of FA, we have FA(p) = H(p), 
so p satisfies (ii) of Definition 3.20. Let us prove that p satisfies (iii) of Definition 3.20. Assume 
by contradiction that there exists q such that FA(q) ≥ H(q) and

]q−, q+[ ∩ ]p−,p[ �= ∅, (38)

and

H(p) < H(q). (39)

Then we deduce that

FA(p) = H(p) < H(q) ≤ FA(q),

so q < p. We distinguish two cases, either q ∈ ]p−, p[, or q < p−. The first case is not possible 
since q satisfies (39) which gives a contradiction with Lemma 3.4. So we have q < p−. But (39)
and Lemma 3.4 imply that q+ < p−, that gives a contradiction with (38). So we have A ⊂ AFA

. 
Using Proposition 3.21, AFA

is a set of effective points. Notice that if we add (resp. remove) 
an element to (resp. from) a set of effective points, this new set is not a set of effective points 
anymore. So necessarily, A = AFA

and we get the result. �
Now we prove that A-strong boundary nonlinearities FA are the only continuous and non-

increasing functions F such that any viscosity solutions of (1) with F satisfying (12) is in fact a 
strong viscosity solution of (1) with F .
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Lemma 3.25. Assume that F is continuous, non-increasing and semi-coercive (4), and assume 
F is not a A-strong boundary nonlinearity, then

{u | u strong visc. solution of (1) with F }� {u | u visc. solution of (1) with F } .

Proof of Lemma 3.25. The inclusion is obvious. Let us prove that the two sets are not equal. The 
function F is not a A-strong boundary nonlinearity, so it exists q ∈ R such that F(q) �= FAF

(q). 
Either F(q) �= FAF

(q) = H(q) or q ∈ [p−
α , p+

α ] where pα ∈ AF . In the first case, consider 
u(t, x) = −H(q)t + qx. In the second case, using Definition 3.20, at least one of the follow-
ing inequalities holds true,

F(p−
α ) > FAF

(p−
α ),

F (p+
α ) < FAF

(p+
α ).

By symmetry, assume that the first one holds true. So consider u(t, x) = −H(p)t + px with 
p = p−

α . The function u is a viscosity solution of (1) with FAF
, so by Proposition 3.23, u is a 

viscosity solution of (1) with F . But u is not a strong viscosity solution of (1) with F . So we 
deduce the result. �
Remark 3.26. In a framework where we have uniqueness of viscosity solution of (1), for example 
assuming the hypothesis of Part 2 of Theorem 1.8, we see that we can have no existence of strong 
viscosity solution of (1) if F is not a A-strong boundary nonlinearity.

3.4. Comparison principle for a coercive Hamiltonian

Using 1. of Theorem 1.8 and Proposition 3.23, we can deduce a comparison principle for a 
coercive Hamiltonian, but for F only semi-coercive. Although the proof of Part 1 of Theorem 1.8
is in the next section, we prove Part 2 in this section because it is the comparison principle asso-
ciated to Theorem 1.3. It implies that it exists a unique viscosity solution u of (1)–(2) satisfying 
|u(t, x)| ≤ CT (1 +x) which is also the unique strong viscosity solution of (1)–(2) with F = FAF

.

Proof of 2. of Theorem 1.8. We assume here that F is semi-coercive (4). If F < H let p be any 
real number else we define

p = sup {q ∈R | H(q) = F(q)} ,

and G : R →R a continuous function such that G(x) → −∞ when x → +∞, G satisfies G ≤ F

on [p, +∞[ and G(p) = F(p). We define the function F̃ : R →R such that

F̃ =
{

F on ]−∞,p]
G on [p,+∞[.

We have AF = A
F̃

. Indeed, notice that we have the following equivalences for F and F̃ ,

H(p) ≤ F(p) ⇐⇒ H(p) ≤ F̃ (p)

and
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H(p) ≥ F(p) ⇐⇒ H(p) ≥ F̃ (p).

Since in the definition of AF , only the relative position between F and H takes the function F
into account, the previous equivalences give the result. So we deduce using Proposition 3.23 that 
a function u is a viscosity sub-solution (resp. super-solution) for F if and only if u is a strong 
viscosity sub-solution (resp. super-solution) for FAF

, if and only if u is a viscosity sub-solution 
(resp. super-solution) for F̃ . We deduce the comparison principle for F using the comparison 
principle for F̃ (1. of Theorem 1.8). �
Remark 3.27. In Remark 1.10, we say that we don’t need F to be semi-coercive (4), providing 
that sub-solutions satisfy (12). Using the same arguments as in the previous proof, if F is not 
semi-coercive, we define p̄ ≤ p such that if F < H , p̄ is any real number satisfying p̄ ≤ p, else

p̄ = inf {q ∈ R | H(q) = F(q)} .

We define F̃ :R → R such that

F̃ =
⎧⎨
⎩

Ḡ on ]−∞, p̄]
F on [p̄,p]
G on [p,+∞[,

where Ḡ : R → R a continuous function such that Ḡ(x) → +∞ when x → −∞, Ḡ satisfies 
F ≤ Ḡ ≤ H on [p, +∞[ and Ḡ(p̄) = F(p̄). Then the following of the proof is the same as the 
previous proof.

4. Comparison principle for nonconvex and noncoercive Hamilton–Jacobi equations 
allowing constant parts

In this section, we prove the first main comparison principle 1. of Theorem 1.8 for a nonconvex 
and noncoercive Hamiltonian where the boundary condition allows constant parts. The proof 
follows the idea of coupling time and space in the doubling variable method in [10]. First, we 
give a restricted version of the theorem which easily implies the main theorem. Then we prove 
the theorem assuming the existence of a class of test function which satisfies some properties. 
Finally, we give an example of such a test function so that the theorem is proven.

4.1. Simplification of the theorem

Let us prove a restricted version of 1. of Theorem 1.8 where the function F satisfies more 
hypotheses.

Theorem 4.1 (Restricted comparison principle). Assume that the Hamiltonian H : R → R is 
continuous, the function F :R → R is of class C1 and satisfies F ′ < 0, F(0) = 0 and (4)–(5), and 
the initial datum u0 is uniformly continuous. Then for all viscosity sub-solution u and viscosity 
super-solution v of (1)–(2) satisfying for some T > 0 and CT > 0,

u(t, x) ≤ CT (1 + x), v(t, x) ≥ −CT (1 + x), ∀(t, x) ∈ (0, T ) × [0,+∞),

we have
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u ≤ v in [0, T ) × [0,+∞).

Proof of 1. of Theorem 1.8 using Theorem 4.1. It is enough to assume F(0) = 0 as in [16, 
Lemma 3.1], by defining

u(t, x) = ũ(t, x) − tF (0) and v(t, x) = ṽ(t, x) − tF (0)

and F̃ = F − F(0), H̃ = H − F(0). The function u (resp. v) is a sub-solution (resp. super-
solution) of (1) if and only if ũ (resp. ṽ) is a sub-solution (resp. super-solution) of (1) replacing 
H by H̃ and F by F̃ . Let the function F be such that F(0) = 0 and satisfy the hypothesis of 1. of 
Theorem 1.8, i.e. a continuous and non-increasing function which satisfies (4)–(5). By density, 
one can approximate F by a sequence Fn satisfying

‖Fn − F‖∞ ≤ 1

n
∀n ∈N∗,

with the hypothesis of Theorem 4.1, i.e. of class C1 and decreasing such that F ′ < 0 which 
satisfies (4)–(5). Let u be a sub-solution of (1) with the function F . Let us define un = u(x) − t

n
which is a sub-solution of (1) with the function Fn and vn = v(x) + t

n
which is a super-solution 

of (1) with the function Fn. Using Theorem 4.1, we deduce

u(t, x) − t

n
≤ v(t, x) + t

n
∀(t, x) ∈ [0, T ) × [0,+∞).

Sending n to +∞, we deduce the result. �
4.2. The coupling time and space test function

Let us define the norm |(., .)| :R ×R →R by

|(t, x)| =
√

t2 + x2.

Theorem 4.2 (Coupling time and space test function). Assume the function F : R →R is of class 
C1 and satisfies F ′ < 0, F(0) = 0 and (4)–(5). Then there exists a function ϕ : R2 → R of class 
C1 which satisfies the following properties.

1. (Superlinearity)

lim|(t,x)|→+∞
ϕ(t, x)

1 + |(t, x)| = +∞. (40)

2. (Bounded from below)

∀(t, x) �= (0,0), ϕ(t, x) > ϕ(0,0) = 0. (41)

3. (Differential inequalities) For all t ∈ R,

{
ϕt (t, x) + F(ϕx(t, x)) ≥ 0 if x ≤ 0,

ϕt (t, x) + F(ϕx(t, x)) ≤ 0 if x ≥ 0.
(42)
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Remark 4.3. We first admit this theorem to prove the comparison principle and we show it in 
the next subsection. The idea of the proof is to replace in the doubling variable method, the usual 

term (t−s)2

2δ
+ (x−y)2

2ε
by δϕ

(
t−s
δ

,
x−y

δ

)
which prevents the following supremum to be reached at 

the boundary.

4.3. Proof of the comparison principle

Let us recall [16, Lemma 3.4] since we use it in the proof. The proof of this lemma is exactly 
the same as in [16] so we skip it.

Lemma 4.4 (A priori control). Let T > 0 and let u be a sub-solution and v be a super-solution 
as in Theorem 4.1. Then there exists a constant C = C(T ) > 0 such that for all (t, x), (s, y) ∈
[0, T ) × [0, +∞), we have

u(t, x) ≤ v(s, y) + C(1 + |x − y|).

Proof of Theorem 4.1. The proof proceeds in several steps.
Step 1: Penalization procedure. As explain in Remark 1.9, we assume that u is upper semi-

continuous and v is lower semi-continuous. We want to prove that

M = sup
(t,x)∈[0,T )×[0,+∞)

(u(t, x) − v(t, x)) ≤ 0.

Assume by contradiction that M > 0. Let us define

Mδ,α = sup
(t,x),(s,y)∈[0,T )×[0,+∞)

{
u(t, x) − v(s, y) − δϕ

(
t − s

δ
,
x − y

δ

)

− η

T − t
− η

T − s
− αx2

2

}

where δ, η, α are positive constants. Then for α, η small enough, we have Mδ,α ≥ M
2 > 0. Indeed, 

by definition of the supremum M , there exists (t0, x0) ∈ [0, T ) × [0, +∞) such that

u(t0, x0) − v(t0, x0) ≥ 3M

4
,

so

Mδ,α ≥ u(t0, x0) − v(t0, x0) − 2η

T − t0
− α

x2
0

2
≥ M

2
,

for α, η small enough. We want to show that this supremum is reached. For all x, y, t, s such that

0 <
M

2
≤ u(t, x) − v(s, y) − δϕ

(
t − s

δ
,
x − y

δ

)
− η

T − t
− η

T − s
− α

x2

2
, (43)

by Lemma 4.4, we have
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0 <
M

2
≤ CT (1 + |x − y|) − δϕ

(
t − s

δ
,
x − y

δ

)
− η

T − t
− η

T − s
− α

x2

2
, (44)

so we deduce that

δϕ

(
t − s

δ
,
x − y

δ

)
≤ CT (1 + |x − y|), (45)

and that

(αx)2

2
≤ αCT (1 + |x − y|) (46)

By dividing (45) by 1 + |(t − s, x − y)|, the property (40) of ϕ implies that x − y and t − s are 
bounded, independently of α, for x, y, t, s satisfying (43). So using (46), x, y, t, s are in a com-
pact set so the supremum Mδ,α is reached at some point (t, x, s, y) = (tδ, xδ, sδ, yδ). Moreover, 
for δ → 0, using any converging subsequence and (45) dividing by 1 +|(t − s, x − y)|, using the 
property (40) and (41), we deduce that, tδ − sδ and xδ − yδ go to 0.

Step 2: Use of the initial condition. If tδ or sδ = 0 along a subsequence then tδ, sδ → 0 as 
δ → 0 by the previous step so, up to extract once again, (xδ, yδ) → (x0, x0). So we get from (43),

0 <
M

2
≤ u(tδ, xδ) − v(sδ, yδ).

So letting δ → 0, the limit superior of the right hand side is smaller than u0(x0) − u0(x0) = 0
and we get a contradiction.

Step 3: Use of viscosity inequalities. We can now assume that tδ > 0 and sδ > 0 and write 
the viscosity inequalities at (t, x, s, y) = (tδ, xδ, sδ, yδ).

Case 1: If x = 0 and min(H, F) = F at ϕx

(
t−s
δ

,
−y
δ

)
.

The inequality for the sub-solution is

η

(T − t)2
+ ϕt

(
t − s

δ
,
−y

δ

)
+ F

(
ϕx

(
t − s

δ
,
−y

δ

))
≤ 0.

Using property (42), we get a positive left-hand side which gives a contradiction.

Case 2: If y = 0 and max(H, F) = F at ϕx

(
t−s
δ

, x
δ

)
.

The inequality for the super-solution is

− η

(T − s)2
+ ϕt

(
t − s

δ
,
x

δ

)
+ F

(
ϕx

(
t − s

δ
,
x

δ

))
≥ 0.

Using property (42), we get a negatif left-hand side which gives a contradiction.
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Case 3: Other cases

The inequality for the sub-solution is

η

(T − t)2
+ ϕt

(
t − s

δ
,
x − y

δ

)
+ H

(
ϕx

(
t − s

δ
,
x − y

δ

)
+ αx

)
≤ 0,

and the inequality for the super-solution is

− η

(T − s)2
+ ϕt

(
t − s

δ
,
x − y

δ

)
+ H

(
ϕx

(
t − s

δ
,
x − y

δ

))
≥ 0.

Substracting these inequalities, we get

2η

T 2
≤ H

(
ϕx

(
t − s

δ
,
x − y

δ

))
− H

(
ϕx

(
t − s

δ
,
x − y

δ

)
+ αx

)
. (47)

Since t − s and x − y are bounded independently of α and since αx goes to 0 when α → 0, 
thanks to (46), using the fact that H is uniformly continuous in compact subsets, the right hand 
side of (47) goes to 0 when α → 0, we get a contradiction. The proof is now complete. �
4.4. Construction of the test function

The idea is to construct a test function coupling time and space, of the form

ϕ(t, x) = f (t) + g(x) + xE(t),

where the functions f, g, E : R → R are of class C1. In this section, the function F satisfies the 
hypothesis of Theorem 4.1. Let us first define a function G, we will next use it to define the 
function E.

Definition 4.5 (Function G). Let G be a continuous function such that

• G ≥ max((−F−1)′, (−2F)−1) > 0,
• G is even i.e. ∀t ∈ R, G(−t) = G(t),
• G is non-increasing in (−∞, 0] and non-decreasing on [0, +∞).

Remark 4.6. The function G exists since max((−F−1)′, (−2F)−1) is continuous and (−F−1)′
is positive. Moreover, we have

lim
x→±∞G(x) = +∞,

since (−2F)−1 is increasing and goes to +∞ at +∞.

Proposition 4.7 (Function E). Assume F is of class C1 and satisfies F ′ < 0, F(0) = 0 and 
(4)–(5). Then there exists a function E of class C1 solution of the ODE
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{

E′ = 1
G(−2F(E))

E(0) = 0,
(48)

which satisfies the same properties as −F , i.e., E′ > 0, E(0) = 0 and

lim
x→−∞E(x) = −∞ and lim

x→+∞E(x) = +∞. (49)

Moreover, we have

lim
x→±∞E′(x) = 0. (50)

Proof of Proposition 4.7. The existence of a solution for (48) is given by Cauchy–Peano–Arzela 
global existence theorem. Indeed, since 0 < (−F−1)′(0) ≤ G, we have 0 < 1

G
≤ 1

(−F−1)′(0)
so the 

function

1

G(−2F)

is bounded and continuous. Moreover, since G ≥ (−F−1)′ > 0, we have E′ > 0. Let us prove 
that E satisfies (49) by contradiction. If E has a finite limit then using (48), E′ has a finite limit 
L > 0 so

E(t) ∼ Lt

and E has an infinite limit which is a contradiction. We deduce (50) using (48). �
Let us define the function f .

Definition 4.8 (Function f ). Let f be the function of class C1 such that f ′(t) = −F(E(t)) and 
f (0) = 0.

Let us define the function g. First, we define some functions ψ , ψ1 and ψ2,

ψ(t, x) = −F−1(xE′(t) − F(E(t)) − E(t),

ψ1(x) = sup
t∈R

ψ(t, x),

ψ2(x) = inf
t∈Rψ(t, x).

Proposition 4.9. The function ψ1 is lower semi-continuous and locally bounded in [0, +∞), 
continuous at 0 and satisfies ψ1(0) = 0. The function ψ2 is upper semi-continuous and locally 
bounded in (−∞, 0], continuous at 0 and satisfies ψ2(0) = 0.

Proof of Proposition 4.9. The function ψ1 (resp. ψ2) is lower (resp. upper) semi-continuous 
because it is a supremum (resp. infimum) of continuous functions.

Let us prove that ψ1 and ψ2 are locally bounded and continuous at 0. By using the Taylor 
expansion of the function −F−1 of class C1, there exists θ : R2 → [0, 1] such that
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ψ(t, x) = xE′(t)(−F−1)′(−F(E(t)) + θ(t, x)xE′(t)).

If 0 ≤ x ≤ R, for R > 0, since G ≥ (−F−1)′ > 0, we have

0 ≤ ψ(t, x) ≤ xE′(t)G(−F(E(t)) + θ(t, x)xE′(t))
≤ xE′(t)G(−F(E(t)) + RE′(t)). (51)

Let us prove that the continuous function h : t → E′(t)G(−F(E(t)) + RE′(t)) is bounded in R. 
Since h is continuous, we only need to prove that h is bounded for |t | big enough. Using (50), 
for t ≥ 0 big enough, we have RE′(t) ≤ 1 and −F(E(t)) + 1 ≤ −2F(E(t)). Using that G is 
non-decreasing in [0, +∞), we deduce from (48) that

0 ≤ h(t) ≤ E′(t)G(−F(E(t)) + 1) ≤ G(−F(E(t)) + 1)

G(−2F(E(t)))
≤ 1.

By the same argument, for t ≤ 0 small enough, we have RE′(t) ≥ −1 and −F(E(t)) − 1 ≥
−2F(E(t)). So since G is non-increasing in (−∞, 0], we deduce with (48) that

0 ≤ h(t) ≤ E′(t)G(−F(E(t)) − 1) ≤ 1.

We deduce from (51) that ψ1 is locally bounded in [0, +∞) and that ψ1(0) = 0. By the same 
arguments, we also deduce that ψ2 is locally bounded in (−∞, 0] and that ψ2(0) = 0. The proof 
is now complete. �
Lemma 4.10 (Function g). Let g be a function of class C1 such that g(0) = 0 and such that g′
satisfies g′(0) = 0 and

g′(x) ≥ max(2x,ψ1(x)) for x ≥ 0,

and

g′(x) ≤ min(2x,ψ2(x)) for x ≤ 0.

Proof. The construction of the function g′ is a consequence of the fact that ψ1 and ψ2 are locally 
bounded and continuous at 0. �

Now, we can prove that the function ϕ defined by ϕ(t, x) = f (t) +g(x) +xE(t) satisfies (42).

Proposition 4.11. The function ϕ(t, x) = f (t) + g(x) + xE(t) satisfies (42).

Proof of Proposition 4.11. Since the function g satisfies for all t ∈ R,

g′(x) ≥ ψ1(x) ≥ ψ(t, x) = (−F−1)(xE′(t) − F(E(t)) − E(t) for x ≥ 0,

and

g′(x) ≤ ψ2(x) ≤ ψ(t, x) = (−F−1)(xE′(t) − F(E(t)) − E(t) for x ≤ 0,
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and since −F−1 is increasing, we deduce that

−F(E(t)) + xE′(t) + F(g′(x) + E(t)) ≤ 0 for x ≥ 0,

and

−F(E(t)) + xE′(t) + F(g′(x) + E(t)) ≥ 0 for x ≤ 0.

These inequalities are exactly (42). �
Let us prove that the function ϕ satisfies (40) and (41).

Proposition 4.12. The function ϕ is of class C1 and superlinear (40).

Proof of Proposition 4.12. By construction, the function ϕ is of class C1. With the definition of 
g in hand, we deduce that g(x) ≥ x2. Using that

|xE(t)| ≤ x2

2
+ E(t)2

2
,

we deduce that

ϕ(t, x) ≥ f (t) + x2 − E(t)2

2 − x2

2 ,

≥ f (t) − E(t)2

2 + x2

2 .
(52)

Let us prove that E2

2f
goes to 0 when |t | → +∞. We first compare their derivative which are 

simpler. We have

2f ′(t)
(E2)′(t) = −F(E(t))

E′(t)E(t)
= −F(E(t))G(−2F(E(t)))

E(t)
,

≥ −F(E(t))(−2F)−1(−2F(E(t)))
E(t)

≥ −F(E(t)).

(53)

where the last term goes to +∞ as t goes to +∞. We have the same result for t ≤ 0 using the 
same argument and the fact that G is even,

2f ′(t)
(E2)′(t)

≥ F(E(t)),

where the last term goes to +∞ as t goes to −∞. We deduce that

(E2)′(t)
f ′(t)

→ 0 for t → ±∞.

Since 
∫ t

E2′
(s) ds = E2(t) diverges when t → ±∞, we have
0
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∫ t

0 (E2)′(s)ds∫ t

0 f ′(s)ds
→ 0,

so

E(t)2

f (t)
→ 0 for t → ±∞.

And since f is superlinear (40), t → f (t) − E(t)2

2 is superlinear. We deduce, from (52) that ϕ
satisfies (40).

Proposition 4.13. The function ϕ satisfies (41).

Proof of Proposition 4.13. The function ϕ is of class C1, satisfies ϕ(0, 0) = 0 and is superlinear 
(40) in (t, x). Let us prove that its local extremum is reached only at the point (0, 0) and this 
implies (41). Let (t, x) ∈R2 satisfy,

{
ϕt (t, x) = −F(E(t)) + xE′(t) = 0
ϕx(t, x) = g′(x) + E(t) = 0.

(54)

First, we notice that for (t, x) satisfying (54), t = 0 if and only if x = 0. Let us prove that t = 0
as soon as x > 0 and (t, x) satisfies (54). If x > 0, we have taking s = 0

−E(t) = g′(x) ≥ sup
s∈R

{
(−F−1(xE′(s) − F(E(s))) − E(s)

}
≥ −F−1(xE′(0)),

so we have

E(t) ≤ F−1(xE′(0)).

And we also have, since F is decreasing,

xE′(t) = F(E(t)) ≥ F(F−1(xE′(0))) = xE′(0).

If t ≥ 0, since E′ is non-increasing in [0, +∞), we deduce that t ≤ 0 so t = 0 and x = 0, which 
gives a contradiction. If t ≤ 0, since E′ is non-decreasing, we deduce that t ≥ 0 so t = 0 and 
x = 0, which also gives a contradiction. The case x < 0 is similar so we skip it. This ends the 
proof. �
Proof of Theorem 4.2. Combine Propositions 4.11, 4.12 and 4.13. �
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Appendix A. Reformulation of state constraints

Let us prove the reformulation of state constraint result in the case where the Hamiltonian is 
not necessarily convex.

Theorem A.1 (Reformulation of state constraints). Assume H : R → R is continuous and coer-
cive (3) and u : (0, T ) × [0, +∞) → R satisfies (12) then u is a viscosity solution of

{
ut + H(ux) = 0 in (0, T ) × (0,+∞)

ut + H(ux) ≥ 0 in (0, T ) × {0}, (55)

if and only if u is a viscosity solution of

{
ut + H(ux) = 0 in (0, T ) × (0,+∞)

ut + H−(ux) = 0 on (0, T ) × {0}, (56)

where H− is the decreasing part of the Hamiltonian defined by

H−(p) = inf
q≤p

H(q).

First we prove that FAH− = H− that allows us to use Theorem 3.15 of reduction of the set of 
test functions.

Definition A.2 (Set of effective points A0). Let H : R → R be continuous and coercive (3). The 
set of effective points A0 is the set of points p ∈R such that

• p− = p < p+,
• ∀q ∈ R such that ]q−, q+[ ∩ ]p, p+[ �= ∅, we have H(q) ≥ H(p).

Lemma A.3. We have AH− = A0.

Proof of Lemma A.3. Notice first that H− ≤ H and that H− is non-increasing. Using Defini-
tion 3.20, it only remains to prove that for all p ∈ AH− we have p− = p. Assume by contradic-
tion that there exists p ∈ AH− such that p− < p. Then using Proposition 3.21 we deduce that p
satisfies (ii) of (24) so H(p) = H−(p). We deduce from Lemma 3.4 that

∀q ∈ ]p−,p[ H−(q) ≤ H(q) < H(p) = H−(p),

but H− is non-increasing which gives a contradiction. So we have p− = p. We deduce that 
AH− = A0. �
Lemma A.4. We have FAH− = FA0 = H−.

Proof of Lemma A.4. From Lemma A.3, we deduce that FH− = FA0 . Let us prove that 
FA0 = H−. Notice first that

FA0 ≤ H. (57)

Let p ∈R.



JID:YJDEQ AID:8801 /FLA [m1+; v1.258; Prn:8/05/2017; 14:35] P.37 (1-39)

J. Guerand / J. Differential Equations ••• (••••) •••–••• 37
If there exists pα ∈ A0 such that p ∈ ]pα, p+
α [ then we have

H−(p) ≤ FA0(p) = H(pα).

Moreover, from Lemma 3.4 we have

∀q ∈ ]pα,p[ H(pα) < H(q)

and since FA0 is non-increasing and by (57), we have also

∀q ≤ pα H(pα) = FA0(pα) ≤ FA0(q) ≤ H(q).

So we have

H−(p) = inf
q≤p

H(q) = H(pα) = FA0(p).

If p /∈ ⋃
pα∈A0

]pα, p+
α [, then

FA0(p) = H(p) ≥ H−(p).

Moreover, since FA0 is non-increasing and by (57), we have

∀q ≤ p H(p) = FA0(p) ≤ FA0(q) ≤ H(q).

So FA0(p) = H(p) = H−(p). We deduce that FA0 = H−. �
The proof is exactly the same as in [13,16].

Proof of Theorem A.1. We do the proof in three steps.
1st step: Let us prove that

ut + H(ux) ≤ 0 in (0, T ) × (0,+∞),

implies

ut + H−(ux) ≤ 0 on (0, T ) × {0}.

Since ∀pα ∈ A0, p−
α = pα , using Theorem 3.15, we deduce that u is a strong viscosity sub-

solution with FA0 , so

ut + FA0(ux) ≤ 0 on (0, T ) × {0}.

Since FA0(ux) = H−(ux), we have

ut + H−(ux) ≤ 0 on (0, T ) × {0}.
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2nd step: Let us prove that

ut + H(ux) ≥ 0 in (0, T ) × [0,+∞),

implies

ut + H−(ux) ≥ 0 on (0, T ) × {0}.

Let ϕ be a test function touching u∗ from below at (t0, 0). Using Theorem 3.15, we assume that

ϕ(t, x) = ψ(t) + φα(x),

where ψ ∈ C1((0, T )) and

φα ∈ C1([0,+∞)), φ′
α(0) = pα.

We have ϕx(t0, 0) = pα and

H(ϕx(t0,0)) = H(pα) = FA0(pα) = H−(pα) = H−(ϕx(t0,0)),

so by hypothesis, we have ϕt + H(ϕx(t0, 0)) ≥ 0. We deduce that

ϕt + H−(ϕx(t0,0)) ≥ 0.

3rd step: The reverse comes from the fact that H− ≤ H . �
Remark A.5. In [13], the author gives simpler proofs without using Theorem of reduction of the 
set of test functions.
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