期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:391
SBV-like regularity for Hamilton-Jacobi equations with a convex Hamiltonian
Article
Bianchini, Stefano2  Tonon, Daniela1 
[1] Univ Paris 06, Inst Math Jussieu, F-75252 Paris, France
[2] SISSA, I-34136 Trieste, Italy
关键词: SBV regularity;    Hamilton-Jacobi equations;    Viscosity solutions;   
DOI  :  10.1016/j.jmaa.2012.02.017
来源: Elsevier
PDF
【 摘 要 】

In this paper we consider a viscosity solution u of the Hamilton-Jacobi equation partial derivative(t)u + H(D(x)u) = 0 in Omega subset of [0,T] x R-n. where H is smooth and convex. We prove that when d(t,center dot) := H-p(D(x)u(t,center dot)), H-p := del H is BV for all t epsilon [0, T] and suitable hypotheses on the Lagrangian L hold, the Radon measure divd(t,center dot) can have Cantor part only for a countable number of t's in [0,T]. This result extends a result of Robyr for genuinely nonlinear scalar balance laws and a result of Bianchini, De Lellis and Robyr for uniformly convex Hamiltonians. (c) 2012 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2012_02_017.pdf 287KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次