JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:391 |
SBV-like regularity for Hamilton-Jacobi equations with a convex Hamiltonian | |
Article | |
Bianchini, Stefano2  Tonon, Daniela1  | |
[1] Univ Paris 06, Inst Math Jussieu, F-75252 Paris, France | |
[2] SISSA, I-34136 Trieste, Italy | |
关键词: SBV regularity; Hamilton-Jacobi equations; Viscosity solutions; | |
DOI : 10.1016/j.jmaa.2012.02.017 | |
来源: Elsevier | |
【 摘 要 】
In this paper we consider a viscosity solution u of the Hamilton-Jacobi equation partial derivative(t)u + H(D(x)u) = 0 in Omega subset of [0,T] x R-n. where H is smooth and convex. We prove that when d(t,center dot) := H-p(D(x)u(t,center dot)), H-p := del H is BV for all t epsilon [0, T] and suitable hypotheses on the Lagrangian L hold, the Radon measure divd(t,center dot) can have Cantor part only for a countable number of t's in [0,T]. This result extends a result of Robyr for genuinely nonlinear scalar balance laws and a result of Bianchini, De Lellis and Robyr for uniformly convex Hamiltonians. (c) 2012 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jmaa_2012_02_017.pdf | 287KB | download |