期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:258
k-Symplectic Lie systems: theory and applications
Article
de Lucas, J.1  Vilarino, S.2,3 
[1] Univ Warsaw, Dept Math Methods Phys, PL-02093 Warsaw, Poland
[2] Ctr Univ Def Zaragoza, E-50090 Zaragoza, Spain
[3] IUMA, E-50090 Zaragoza, Spain
关键词: k-Symplectic structure;    Lie system;    Poisson structure;    Superposition rule;    Vessiot-Guldberg Lie algebra;   
DOI  :  10.1016/j.jde.2014.12.005
来源: Elsevier
PDF
【 摘 要 】

A Lie system is a system of first-order ordinary differential equations describing the integral curves of a t-dependent vector field taking values in a finite-dimensional real Lie algebra of vector fields: a so-called Vessiot-Guldberg Lie algebra. We suggest the definition of a particular class of Lie systems, the k-symplectic Lie systems, admitting a Vessiot-Guldberg Lie algebra of Hamiltonian vector fields with respect to the presymplectic forms of a k-symplectic structure. We devise new k-symplectic geometric methods to study their superposition rules, t-independent constants of motion and general properties. Our results are illustrated through examples of physical and mathematical interest. As a byproduct, we find a new interesting setting of application of the k-symplectic geometry: systems of first-order ordinary differential equations. (C) 2015 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2014_12_005.pdf 490KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次