会议论文详细信息
24th International Conference on Integrable Systems and Quantum symmetries
Superintegrable systems on Poisson manifolds
Kurov, A.^1 ; Sardanashvily, G.^1
Department of Theoretical Physics, Moscow State University, Moscow
119991, Russia^1
关键词: Action-angle coordinates;    Lie Algebra;    Point wise;    Poisson manifolds;    Poisson structure;    Restrictive conditions;    Symplectic;   
Others  :  https://iopscience.iop.org/article/10.1088/1742-6596/804/1/012025/pdf
DOI  :  10.1088/1742-6596/804/1/012025
来源: IOP
PDF
【 摘 要 】

The definition of superintegrable systems on a symplectic manifold implies a rather restrictive condition 2n = k + m where 2n is a dimension of a symplectic manifold, k is a dimension of a pointwise Lie algebra of a superintegrable system, and m is its corank. To solve this problem, we aim to consider partially superintegrable systems on Poisson manifolds where k + m is the rank of a compatible Poisson structure. The according extensions of the Mishchenko-Fomenko theorem on generalized action-angle coordinates is formulated.

【 预 览 】
附件列表
Files Size Format View
Superintegrable systems on Poisson manifolds 533KB PDF download
  文献评价指标  
  下载次数:13次 浏览次数:8次