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Abstract

A Lie system is a system of first-order ordinary differential equations describing the integral curves of 
a t-dependent vector field taking values in a finite-dimensional real Lie algebra of vector fields: a so-
called Vessiot–Guldberg Lie algebra. We suggest the definition of a particular class of Lie systems, the 
k-symplectic Lie systems, admitting a Vessiot–Guldberg Lie algebra of Hamiltonian vector fields with 
respect to the presymplectic forms of a k-symplectic structure. We devise new k-symplectic geometric 
methods to study their superposition rules, t-independent constants of motion and general properties. Our 
results are illustrated through examples of physical and mathematical interest. As a byproduct, we find a 
new interesting setting of application of the k-symplectic geometry: systems of first-order ordinary differ-
ential equations.
© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

The interest of geometric techniques for studying systems of differential equations is un-
deniable [2,5,10,45,57]. For instance, symplectic and Poisson geometry techniques have been 
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employed to uncover interesting structures of many dynamical systems [45]. Further, other more 
recently discovered geometric structures, e.g. Dirac or Jacobi structures, have also proved their 
usefulness for studying differential equations and related topics [29,38,59]. In this work, we fo-
cus upon the study of a particular class of differential equations, the Lie systems [4,16,20,22,49,
56], by means of the referred to as k-symplectic structures [6,29,35].

A Lie system is a system of first-order ordinary differential equations whose general solution 
can be expressed as a function, the superposition rule, of a generic finite set of particular so-
lutions and a set of constants. In geometric terms, the Lie–Scheffers Theorem [16] asserts that 
a Lie system is equivalent to a t -dependent vector field taking values in a finite-dimensional 
Lie algebra of vector fields: a Vessiot–Guldberg Lie algebra [20,30,31,53]. This condition is so 
stringent that just few systems of differential equations can be considered as Lie systems [20]. 
Nevertheless, Lie systems appear in important physical and mathematical problems and enjoy 
relevant geometric properties [4,20,23,25,26,30,51,53], which strongly prompt their analysis.

Some attention has lately been paid to Lie systems admitting a Vessiot–Guldberg Lie algebra 
of Hamiltonian vector fields with respect to several geometric structures [7,8,21]. Surprisingly, 
studying these particular types of Lie systems led to investigate much more Lie systems and 
applications than before. The first attempt in this direction was performed by Marmo, Cariñena 
and Grabowski [15], who briefly studied Lie systems with Vessiot–Guldberg Lie algebras of 
Hamiltonian vector fields relative to a symplectic structure. This line of research was posteriorly 
followed by several researchers [4,26].

The general theory of Lie systems admitting a Vessiot–Guldberg Lie algebra of Hamiltonian 
vector fields with respect to a Poisson structure, the Lie–Hamilton systems, was fully established 
in [21]. For instance, this approach allows one to prove that the well-known invariant for Riccati 
equations [58]

k = (x1 − x3)(x2 − x4)

(x1 − x4)(x2 − x3)

can be retrieved as a Casimir element of a real Lie algebra of Hamiltonian functions [8]. More-
over, this work introduced the study of Poisson co-algebra techniques to obtain superposition 
rules for these systems [8].

The no-go theorem for Lie–Hamilton systems is a useful tool to establish when Lie systems are 
not Lie–Hamilton ones as witnessed by its applications in the literature [14]. Meanwhile, many 
such systems admit Vessiot–Guldberg Lie algebras of Hamiltonian vector fields with respect to a 
Dirac structure. This can be employed to generalise the techniques employed for Lie–Hamilton 
systems to a larger class of Lie systems: the Dirac–Lie systems [14].

As a byproduct of studying Dirac–Lie systems, they appeared some Lie systems that admit a 
Vessiot–Guldberg Lie algebra with respect to several presymplectic structures. We here discover 
a new characteristic of many of these systems: the kernel of these presymplectic structures have 
zero intersection, i.e. they form a k-symplectic structure [29]. Such systems are relevant as they 
describe Schwarzian equations [14] and coupled Riccati equations [8], which have applications 
in the theory of Lie systems, classical mechanics and other fields [16].

In this work, we show that the above mentioned property can also be found in many other 
Lie systems, e.g. in Lie systems for studying diffusion equations or control systems [44,50]. 
This suggests us to define a new type of Lie systems, the k-symplectic Lie systems, admitting 
Vessiot–Guldberg Lie algebras of Hamiltonian vector fields relative to the presymplectic forms 
of a k-symplectic structure.
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The development of our new techniques to study k-symplectic Lie systems leads to the def-
inition and analysis of new geometric structures for k-symplectic manifolds. We show that it is 
relevant, at least for our methods, to define generalisations of the usual structures of the sym-
plectic geometry to the realm of k-symplectic structures. In this way, we define the here called 
k-symplectic Hamiltonian functions and k-symplectic vector fields. We construct certain Poisson 
structures related to k-symplectic structures, the derived Poisson algebras, which are a key to ob-
tain superposition rules for k-symplectic Lie systems. This significantly improve and generalise 
a very few results given in [6] and [41] where analogous of our new structures, e.g. k-symplectic 
Hamiltonian functions, very briefly appear under other denominations. We have kept our ter-
minology as we think that it reflects the fact that we are generalising presymplectic notions. 
Moreover, our results are more general since, for instance, the k-symplectic Hamiltonian func-
tions appearing in [6], the referred to as Hamiltonian maps, are defined only for a certain type of 
k-symplectic structures.

Nowadays, the k-symplectic geometry is mainly applied to the study of first-order classi-
cal field theories. In particular, it gives a geometric description of the Euler–Lagrange and the 
Hamilton–De Donder–Weyl field equationsand the systems described by them. For instance, 
k-symplectic geometry enables us to describe their symmetries, conservation laws, reductions, 
etcetera [6,29,35,40,42,52]. Meanwhile, we consider k-symplectic structures for studying sys-
tems of differential equations, which opens a new setting of application of these geometrical 
structures.

We demonstrate that k-symplectic Lie systems can be considered as Dirac–Lie systems in 
several non-equivalent ways. This does not mean that k-symplectic Lie systems must be con-
sider simply as Dirac–Lie systems. Indeed, the techniques devised for k-symplectic Lie systems 
are more powerful since, roughly speaking, they permit us to use all these non-equivalent Dirac–
Lie systems at the same time. For instance, we illustrate that a Schwarzian equation [9,47] can 
be studied as a k-symplectic Lie system or as a Dirac–Lie system in different manners. The 
k-symplectic structure allows us to obtain simultaneously several constants of motion giving rise 
to a superposition rule for these differential equations. Meanwhile, if we consider Schwarzian 
equations as Dirac–Lie systems, these constants of motion must be obtained separately using 
different geometric arguments.

The structure of the paper goes as follows. Section 2 concerns the description of the most basic 
notions to be used throughout our paper: t -dependent vector fields, Lie systems and k-symplectic 
structures. In Section 3 the analysis of several remarkable Lie systems leads to introduce the 
concept of a k-symplectic Lie system, which encompasses such systems as particular cases. As 
it can be difficult to determine whether a Lie system is a k-symplectic Lie system; we pro-
vide a no-go theorem to determine necessary conditions to be a k-symplectic Lie system in 
Section 4. Sections 5 and 6 are devoted to introducing some geometric structures which are em-
ployed to study k-symplectic Lie systems. In particular, in Section 5 we introduce the notion 
of Ω-Hamiltonian function as a generalisation of the Hamiltonian function notion, and in Sec-
tion 6 we relate k-symplectic structures to various Poisson algebras: its derived Poisson algebras. 
Subsequently, the k-symplectic Lie–Hamiltonian structures are introduced and analysed in Sec-
tion 7. Next, we analyse general properties of k-symplectic Lie systems in Section 8. Section 9
is devoted to devising a method to calculate superposition rules for k-symplectic Lie systems. 
Finally, Section 10 summarises our main results and present an outlook of our future research on 
these systems.
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2. Fundamentals

Unless otherwise stated, we assume all mathematical objects to be real, smooth and globally 
defined. This permits us to omit minor technical problems so as to highlight the main aspects of 
our theory.

Given a linear space V and a subset {v1, . . . , vk} ⊂ V , we write 〈v1, . . . , vk〉 for the linear hull 
of the vectors v1, . . . , vk . Let us denote Lie algebras by pairs (V , [·,·]), where V is endowed with 
a Lie bracket [·,·] : V ×V → V . Given two subsets A, B ⊂ V , we write [A, B] for the real linear 
space spanned by the Lie brackets between elements of A and B. We define Lie(B, V, [·,·]) to be 
the smallest Lie subalgebra of V containing B. From now on, we use Lie(B) and V to represent 
Lie(B, V, [·,·]) and (V , [·,·]), correspondingly, when their meaning is clear from context.

Given a fibre vector bundle pr : P → N , we denote by Γ (pr) its C∞(N)-module of smooth 
sections. So, if τN : T N → N and πN : T ∗N → N are the canonical projections associated 
with the tangent and cotangent bundle to N , respectively, then Γ (τN) and Γ (πN) designate the 
C∞(N)-modules of vector fields and one-forms on N , correspondingly.

A generalised distribution D on a manifold N is a function that maps each x ∈ N to a linear 
subspace Dx ⊂ TxN . We say that D is regular at x ′ ∈ N when the function r : x ∈ N 
→ dimDx ∈
N ∪{0} is locally constant around x′. Similarly, D is regular on an open U ⊂ N when r is constant 
on U . A vector field Y ∈ Γ (τN) is said to take values in D, in short Y ∈ D, when Yx ∈ Dx for 
all x ∈ N . Likewise, similar notions can be defined for a generalised codistribution, namely a 
mapping relating each x ∈ N to a linear subspace of T ∗

x N .
We call t -dependent vector field on N a map X : (t, x) ∈ R × N 
→ X(t, x) ∈ T N such that 

τN ◦ X = π2 for π2 : (t, x) ∈ R × N 
→ x ∈ N . This condition entails that every t -dependent 
vector field amounts to a family of vector fields {Xt}t∈R with Xt : x ∈ N 
→ X(t, x) ∈ T N for all 
t ∈ R [20].

An integral curves of X is an integral curve γ : R 
→ R × N of the suspension of X, i.e. the 
vector field ∂/∂t + X(t, x) on R × N [1]. Every integral curve γ of X admits a parametrisation 
in terms of a parameter t̄ such that γ (t̄) = (t̄ , x(t̄)) and

d(π2 ◦ γ )

dt̄
(t̄ ) = (X ◦ γ )(t̄).

This system is referred to as the associated system of X. Conversely, every system of first-order 
ordinary differential equations in normal form describes the integral curves γ (t̄) = (t̄ , x(t̄)) of a 
unique t -dependent vector field. This establishes a bijection between t -dependent vector fields 
and systems of first-order ordinary differential equations in normal form, which justifies to use X

to denote both a t -dependent vector field and its associated system.

Definition 2.1. The minimal Lie algebra of a t -dependent vector field X on N is the smallest real 
Lie algebra, V X , containing the vector fields {Xt}t∈R, namely V X = Lie({Xt }t∈R).

Definition 2.2. Given a t -dependent vector field X on N , its associated distribution, DX, is the 
generalised distribution on N spanned by the vector fields of V X , i.e.

DX
x = {Yx

∣∣ Y ∈ V X
}⊂ TxN, x ∈ N,

and its associated co-distribution, VX, is the generalised co-distribution on N of the form
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VX
x = {ϑ ∈ T ∗

x N
∣∣ ϑ(Zx) = 0, ∀Zx ∈DX

x

}= (DX
x

)◦ ⊂ T ∗
x N,

where (DX
x )◦ is the annihilator of DX

x .

It can be proved that rX : x ∈ N 
→ dimDX
x ∈ N ∪ {0} must only be constant on the connected 

components of an open and dense subset UX of N (see [21]), where DX becomes a regular, in-
volutive and integrable distribution. Since dimVX

x = dimN − rX(x), then VX becomes a regular 
co-distribution on each connected component of UX also. The most relevant instance for us is 
when DX is determined by a finite-dimensional V X and hence DX becomes integrable on the 
whole N in the sense of Stefan–Sussmann [46, p. 63]. It is worth noting that even in this case, 
VX does not need to be a differentiable distribution, i.e. given ϑ ∈ VX

x , it does not generally exist 
a locally defined one-form θ ∈ VX such that θx = ϑ .

Among other reasons, the associated distribution is important to study superposition rules for 
Lie systems [28]. Meanwhile, the associated co-distribution appears in the study of constants of 
motion for Lie systems [21]. For instance, the following proposition described in [21] shows that 
(locally defined) t -independent constants of motion of t-dependent vector fields are determined 
by (locally defined) exact one-forms taking values in its associated co-distribution. Then, VX is 
what really matters in the calculation of such constants of motion for a system X.

Proposition 2.3. A function f : U →R is a t -independent constant of motion for a system X on 
an open U if and only if df ∈ VX|U .

Let us now turn to some fundamental notions appearing in the theory of Lie systems.

Definition 2.4. A superposition rule depending on m particular solutions for a system X on N is 
a function Φ : Nm × N → N , x = Φ(x(1), . . . , x(m); λ), such that the general solution x(t) of X
can be brought into the form x(t) = Φ(x(1)(t), . . . , x(m)(t); λ), where x(1)(t), . . . , x(m)(t) is any 
generic family of particular solutions and λ is a point of N to be related to initial conditions.

The conditions ensuring that a system X possesses a superposition rule are stated by the 
Lie–Scheffers Theorem [16,37].

Theorem 2.5. A system X admits a superposition rule if and only if X can be written as X =∑r
α=1bα(t)Xα for a certain family b1(t), . . . , br(t) of t -dependent functions and a collection 

X1, . . . , Xr of vector fields spanning an r-dimensional real Lie algebra. In other words, a system 
X admits a superposition rule if and only if V X is finite-dimensional.

The Lie–Scheffers Theorem may be used to reduce the integration of a Lie system to solving 
a special type of Lie systems on a Lie group [15]. More precisely, every Lie system X on a 
manifold N possessing a Vessiot–Guldberg Lie algebra V , let us say X =∑r

α=1bα(t)Xα , where 
X1, . . . , Xr is a basis of V , can be associated with a (generally local) Lie group action ϕ : G ×
N → N whose fundamental vector fields coincide with those of V and dimG = dimV [48, 
Theorem XI]. This action allows us to bring the general solution x(t) of X into the form x(t) =
ϕ(g(t), x0), where x0 ∈ N and g(t) is the particular solution with g(0) = e of the Lie system

dg

dt
= −

r∑
bα(t)XR

α (g), g ∈ G, (2.1)

α=1
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where XR
1 , . . . , XR

r form a basis of the linear space of right-invariant vector fields on G admit-
ting the same structure constants as −X1, . . . , −Xr (see [15] for details). In this manner, if ϕ is 
explicitly known, then the explicit integration of a Lie system X reduces to finding one partic-
ular solution of (2.1). Conversely, the general solution of X enables us to construct the solution 
for (2.1) with g(0) = e by solving an algebraic system of equations obtained through ϕ [3].

A presymplectic manifold is a pair (N, ω), where N is a manifold and ω is a closed two-form 
on N . We say that a vector field X on N is Hamiltonian with respect to (N, ω) if there exists a 
function h ∈ C∞(N) such that

ιXω = dh.

In this case, we call h is a Hamiltonian function for X. We write Adm(ω) for the space of Hamil-
tonian functions relative to (N, ω). We also call these functions admissible functions of (N, ω). 
We hereafter denote by Xh, with h ∈ C∞(N), a Hamiltonian vector field of h relative to ω. Since 
kerω may be degenerate, every function h may have different Hamiltonian vector fields. It is 
well known that Adm(ω) is a linear space that become a Poisson algebra when endowed with the 
Poisson bracket {·,·}: Adm(ω) × Adm(ω) → Adm(ω) of the form

{f,g} = Xgf,

where Xg is any Hamiltonian vector field of g. It can be proved that this definition is independent 
of the chosen Xg [55].

Since ω may be degenerate, there may exist non-zero Hamiltonian vector fields related to 
a zero function. We call these vector fields gauge vector fields of ω and we write G(ω) for 
the space of such vector fields. It is immediate that G(ω) is an ideal of Ham(ω). Hence, the 
space Ham(ω)/G(ω) is also a Lie algebra and the quotient projection π : X ∈ Ham(ω) 
→ [X] ∈
Ham(ω)/G(ω) is a Lie algebra morphism. Moreover, we can define the following exact sequence 
of Lie algebras

0 ↪→ H0
dR(N) ↪→ Adm(ω)

Λ→ Ham(ω)

G(ω)
→ 0,

where H0
dR(N) is the zero cohomology de Rham group of N and Λ : f ∈ Adm(ω) 
→ [−Xf ] ∈

Ham(ω)/G(ω) (see [14] for details).

Definition 2.6. Let N be an n(k + 1)-dimensional manifold and ω1, . . . , ωk a set of closed two-
forms on N . We say that (ω1, . . . , ωk) is a k-symplectic structure if

k⋂
i=1

kerωi(x) = {0}, (2.2)

for all x ∈ N . We call (N, ω1, . . . , ωk) a k-symplectic manifold.

Definition 2.7. A k-polysymplectic form on an n(k+1)-dimensional manifold N is an Rk-valued 
closed nondegenerated two-form on N of the form
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Ω =
k∑

i=1

ηi ⊗ ei,

where {e1, . . . , ek} is any basis for Rk . The pair (N, Ω) is called a k-polysymplectic manifold.

Remark 2.8. Historically, the polysymplectic structures (see Definition 2.7) were introduced by 
Günther in [29], while the notion of k-symplectic manifold was introduced by Awane [6] and 
independently by de León et al. [33,34] under the name of k-cotangent structures. Note that 
the notion of k-symplectic structure considered in this paper is not exactly the definition given 
by Awane, because in Awane’s definition a k-symplectic structure on a manifold is a family of 
k closed two-forms such that (2.2) holds and there exists also an integrable distribution V of 
dimension nk such that ωr |V ×V = 0 for all r = 1, . . . , k. Observe that when k = 1, Awane’s defi-
nition reduces to the notion of polarised symplectic manifold, that is a symplectic manifold with 
a Lagrangian submanifold. For that, in [35] we distinguish between k-symplectic and polarised
k-symplectic manifolds and in this paper we follows the definition of k-symplectic manifold con-
sidered in [35].

By taking a basis {e1, . . . , ek} of Rk , every k-symplectic manifold (N, ω1, . . . , ωk) gives rise 
to a polysymplectic manifold (N, Ω =∑k

i=1 ωi ⊗ ei). As Ω depends on the chosen basis, the 
polysymplectic manifold (N, Ω) is not canonically constructed. Nevertheless, two polysymplec-
tic forms Ω1 and Ω2 induced by the same k-symplectic manifold and different bases for Rk are 
the same up to a change of basis on Rk. In this case, we say that Ω1 and Ω2 are gauge equivalent. 
In a similar way, we say that (N, ω1, . . . , ωk) and (N, ω′

1, . . . , ω
′
k) are gauge equivalent if they 

give rise to gauge equivalent polysymplectic forms. We can summarise these results as follows.

Proposition 2.9. Let Symk(N) and Polk(N) be the spaces of k-symplectic and k-polysym-
plectic structures on N , correspondingly. The relation (N, ω1, . . . , ωk)R1(N, ω′

1, . . . , ω
′
k) (or 

Ω1R2Ω2) if and only if the k-symplectic structures (k-polysymplectic manifolds) are gauge 
equivalent is an equivalence relation. Moreover,

φ : [(ω1, . . . ,ωk)
] ∈ Symk(N)/R1 
→

[
k∑

i=1

ωi ⊗ ei

]
∈ Polk(N)/R2

is a bijection.

So, we can say that, up to gauge equivalence, k-symplectic and k-polysymplectic manifolds 
are essentially the same.

Corollary 2.10. Two k-symplectic manifolds (N, ω1, . . . , ωk) and (N, ω′
1, . . . , ω

′
k) are equivalent 

if and only if 〈ω1, . . . , ωk〉 = 〈ω′
1, . . . , ω

′
k〉.

3. On the need of k-symplectic Lie systems

In this section we show for the first time that several Lie systems of physical and mathematical 
interest admit Vessiot–Guldberg Lie algebras of Hamiltonian vector fields with respect to the 
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presymplectic forms of a certain k-symplectic structure. This suggests us to propose a definition 
of k-symplectic Lie systems and, in following sections, to study their properties.

Consider a Schwarzian equation [9,47]

{x, t} = d3x

dt3

(
dx

dt

)−1

− 3

2

(
d2x

dt2

)(
dx

dt

)−2

= 2b1(t), (3.1)

where {x, t} is the refereed to as Schwarzian derivative of the function x(t) in terms of the 
variable t and b1(t) is an arbitrary t -dependent function. This equation is a particular case of a 
third-order Kummer–Schwarz equation [13] and it appears in the study of iterative differential 
[43], Riccati and second-order Kummer–Schwarz equations [39]. For simplicity, we hereafter 
assume b1(t) to be non-constant.

Let us analyse the properties of Schwarzian equations through a Lie system by following the 
exposition given in [13]. The first-order system of differential equations obtained by adding the 
variables v ≡ dx/dt and a ≡ d2x/dt2 to (3.1), i.e.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dx

dt
= v,

dv

dt
= a,

da

dt
= 3

2

a2

v
+ 2b1(t)v,

(3.2)

is a Lie system. Indeed, it is the associated system to the t -dependent vector field

X3KS
t = v

∂

∂x
+ a

∂

∂v
+
(

3

2

a2

v
+ 2b1(t)v

)
∂

∂a
= Y3 + b1(t)Y1,

where the vector fields on O2 = {(x, v, a) ∈ T2
R | v �= 0}, with T2

R being the second tangent 
bundle to R [36], given by

Y1 = 2v
∂

∂a
, Y2 = v

∂

∂v
+ 2a

∂

∂a
, Y3 = v

∂

∂x
+ a

∂

∂v
+ 3

2

a2

v

∂

∂a
, (3.3)

satisfy the commutation relations

[Y1, Y2] = Y1, [Y1, Y3] = 2Y2, [Y2, Y3] = Y3. (3.4)

In consequence, Y1, Y2 and Y3 span a Lie algebra of vector fields V 3KS isomorphic to sl(2, R)

and X3KS becomes a t -dependent vector field taking values in V 3KS, i.e. X3KS is a Lie system.
Let us prove that V 3KS is a finite-dimensional Lie algebra of Hamiltonian vector fields with 

respect to the presymplectic forms of a two-symplectic manifold (O2, ω1, ω2). To do so, we look 
for presymplectic forms ω satisfying that Y1, Y2 and Y3 are Hamiltonian vector fields relative to 
it, i.e. LYαω = 0 for α = 1, 2, 3 and dω = 0. By solving the latter system of partial differential 
equations for ω, we find the presymplectic forms

ω1 ≡ dv ∧ da
, ω2 ≡ − 2

(x dv ∧ da + v da ∧ dx + a dx ∧ dv). (3.5)

v3 v3
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Observe that

kerω1 =
〈

∂

∂x

〉
, kerω2 =

〈
x

∂

∂x
+ v

∂

∂v
+ a

∂

∂a

〉
.

Since v �= 0 for every point of O2, then ω1 and ω2 have constant rank equal to two and kerω1 ∩
kerω2 = {0} on O2. So, (ω1, ω2) forms a two-symplectic structure.

In addition, Y1, Y2 and Y3 are Hamiltonian vector fields with respect to both presymplectic 
forms:

ιY1ω1 = d

(
2

v

)
, ιY2ω1 = d

(
a

v2

)
, ιY3ω1 = d

(
a2

2v3

)
, (3.6)

and

ιY1ω2 = −d

(
4x

v

)
, ιY2ω2 = d

(
2 − 2ax

v2

)
, ιY3ω2 = d

(
2a

v
− a2x

v3

)
. (3.7)

The interest of the two-symplectic structure (ω1, ω2) relies on the fact that system (3.2) cannot be 
studied through a Lie–Hamilton system (see [14] for details). Nevertheless, the use of the above 
presymplectic structures will allow us to study such systems through similar techniques to those 
developed for Lie–Hamilton systems [14].

Let us now turn to showing that the system of Riccati equations

dxi

dt
= a(t) + b(t)xi + c(t)x2

i , i = 1,2,3,4, (3.8)

can also be related as before to a two-symplectic structure. This system is important due to the 
fact that their t -independent constants of motion are employed to obtain a superposition rule for 
Riccati equations [8]. Let us show first that this system is a Lie system on O = {(x1, x2, x3, x4) |∏

i<j (xi − xj ) �= 0}. The system (3.8) is associated to the t -dependent vector field

XRic
t = a(t)X1 + b(t)X2 + c(t)X3,

where

X1 =
4∑

i=1

∂

∂xi

, X2 =
4∑

i=1

xi

∂

∂xi

, X3 =
4∑

i=1

x2
i

∂

∂xi

.

These vector fields satisfy the commutation relations

[X1,X2] = X1, [X1,X3] = 2X2, [X2,X3] = X3. (3.9)

Let us define the symplectic forms

ω1 = dx1 ∧ dx2

(x1 − x2)2
+ dx3 ∧ dx4

(x3 − x4)2
, ω2 =

4∑
i,j=1

dxi ∧ dxj

(xi − xj )2
.

i<j
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Hence, (ω1, ω2) becomes a two-symplectic structure. Additionally, the vector fields X1, X2
and X3 are Hamiltonian relative to ω1 and ω2:

ιX1ω1 = d

(
1

x1 − x2
+ 1

x3 − x4

)
, ιX2ω1 = 1

2
d

(
x1 + x2

x1 − x2
+ x3 + x4

x3 − x4

)
,

ιX3ω1 = d

(
x1x2

x1 − x2
+ x3x4

x3 − x4

)
(3.10)

and

ιX1ω2 = d

(
4∑

i,j=1
i<j

1

xi − xj

)
, ιX2ω2 = 1

2
d

(
4∑

i,j=1
i<j

xi + xj

xi − xj

)
,

ιX3ω2 = d

(
4∑

i,j=1
i<j

xixj

xi − xj

)
. (3.11)

Let us now turn to the system of differential equations

dx1

dt
= b1(t),

dx2

dt
= b2(t),

dx3

dt
= b2(t)x1,

dx4

dt
= b2(t)x

2
1 ,

dx5

dt
= 2b2(t)x1x2,

where b1(t) and b2(t) are arbitrary t -dependent functions and whose interest is due to its relation 
to certain control problems [44,50]. This system is associated to the t -dependent vector field 
Xt = b1(t)X1 + b2(t)X2, with

X1 = ∂

∂x1
, X2 = ∂

∂x2
+ x1

∂

∂x3
+ x2

1
∂

∂x4
+ 2x1x2

∂

∂x5
.

These vector fields span a Lie algebra V of vector fields along with

X3 = ∂

∂x3
+ 2x1

∂

∂x4
+ 2x2

∂

∂x5
, X4 = ∂

∂x4
, X5 = ∂

∂x5
.

Indeed, the only non-vanishing commutation relations between the previous vector fields read

[X1,X2] = X3, [X1,X3] = 2X4, [X2,X3] = 2X5.

Consequently, X is a Lie system as indicated in [50]. Additionally to this, we can add that the 
Lie algebra V consists of Hamiltonian vector fields relative to the presymplectic forms

ω1 = dx1 ∧ dx2, ω2 = dx1 ∧ dx3, ω3 = dx1 ∧ dx4, ω4 = dx2 ∧ dx5 + x2
2 dx1 ∧ dx2.

The kernels of the above presymplectic forms are
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kerω1 =
〈

∂

∂x3
,

∂

∂x4
,

∂

∂x5

〉
, kerω2 =

〈
∂

∂x2
,

∂

∂x4
,

∂

∂x5

〉
, kerω3 =

〈
∂

∂x2
,

∂

∂x3
,

∂

∂x5

〉
,

kerω4 =
〈

∂

∂x3
,

∂

∂x4
,

∂

∂x1
+ x2

2
∂

∂x5

〉
.

Obviously, 
⋂4

i=1 kerωi = {0} and (ω1, . . . , ω4) become a 4-symplectic structure. In addition, 
X1, X2, X3, X4 and X5 are Hamiltonian vector fields with respect to these presymplectic forms. 
In fact,

ιX1ω1 = dx2, ιX1ω2 = dx3, ιX1ω3 = dx4, ιX1ω4 = 1

3
dx3

2 ,

ιX2ω1 = −dx1, ιX2ω2 = −1

2
dx2

1 , ιX2ω3 = −1

3
dx3

1 , ιX2ω4 = d
(
x5 − x1x

2
2

)
,

ιX3ω1 = 0, ιX3ω2 = dx1, ιX3ω3 = −dx2
1 , ιX3ω4 = −dx2

2 ,

ιX4ω1 = 0, ιX4ω2 = 0, ιX4ω3 = −dx1, ιX4ω4 = 0,

ιX5ω1 = 0, ιX5ω2 = 0, ιX5ω3 = 0, ιX5ω4 = −dx2.

Let us now consider the control system in R5 [50]

dx1

dt
= b1(t),

dx2

dt
= b2(t),

dx3

dt
= b2(t)x1 − b1(t)x2,

dx4

dt
= b2(t)x

2
1 ,

dx5

dt
= b1(t)x

2
2 .

This system is associated to the t -dependent vector field

Xt = b1(t)X1 + b2(t)X2,

with

X1 = ∂

∂x1
− x2

∂

∂x3
+ x2

2
∂

∂x5
, X2 = ∂

∂x2
+ x1

∂

∂x3
+ x2

1
∂

∂x4
.

These vector fields span a Lie algebra V of vector fields along with

X3 = ∂

∂x3
+ x1

∂

∂x4
− x2

∂

∂x5
, X4 = ∂

∂x4
, X5 = ∂

∂x5
.

Indeed, the only non-vanishing commutation relations between the previous vector fields read

[X1,X2] = 2X3, [X1,X3] = X4, [X2,X3] = −X5.

Consequently, X is a Lie system. Additionally, the Lie algebra V consists of Hamiltonian vector 
fields relative to the presymplectic forms

ω1 = dx1 ∧ dx2, ω2 = dx2 ∧ dx5, ω3 = dx1 ∧ dx4,

ω4 = dx1 ∧ dx3 + x1dx1 ∧ dx2.
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The kernels of the above presymplectic forms read

kerω1 =
〈

∂

∂x3
,

∂

∂x4
,

∂

∂x5

〉
, kerω2 =

〈
∂

∂x1
,

∂

∂x3
,

∂

∂x4

〉
, kerω3 =

〈
∂

∂x2
,

∂

∂x3
,

∂

∂x5

〉
,

kerω4 =
〈

∂

∂x4
,

∂

∂x5
,

∂

∂x2
− x1

∂

∂x3

〉
.

Obviously, 
⋂4

i=1 kerωi = {0} and (ω1, . . . , ω4) become a 4-symplectic structure. In addition, 
X1, X2, X3, X4 and X5 are Hamiltonian vector fields with respect to the four presymplectic 
forms. In fact,

ιX1ω1 = dx2, ιX1ω2 = −1

3
dx3

2 , ιX1ω3 = dx4, ιX1ω4 = d(x1x2 + x3),

ιX2ω1 = −dx1, ιX2ω2 = dx5, ιX2ω3 = −1

3
dx3

1 , ιX2ω4 = −dx2
1 ,

ιX3ω1 = 0, ιX3ω2 = 1

2
dx2

2 , ιX3ω3 = −1

2
dx2

1 , ιX3ω4 = −dx1,

ιX4ω1 = 0, ιX4ω2 = 0, ιX4ω3 = −dx1, ιX4ω4 = 0,

ιX5ω1 = 0, ιX5ω2 = −dx2, ιX5ω3 = 0, ιX5ω4 = 0.

It was recently proved that diffusion equations and other PDEs can be approached through the 
Lie system [32,54]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ds

dt
= −4a(t)us − 2d(t)s,

dx

dt
= (c(t) + 4a(t)u

)
x + f (t) − 2ug(t),

du

dt
= −b(t) + 2c(t)u + 4a(t)u2,

dy

dt
= (2a(t)x − g(t)

)
v,

dv

dt
= (c(t) + 4a(t)u

)
v,

dz

dt
= a(t)x2 − g(t)x.

dw

dt
= a(t)v2,

Its general solution can be obtained by integrating⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

du

dt
= −b(t) + 2c(t)u + 4a(t)u2,

dv

dt
= (c(t) + 4a(t)u

)
v,

dw

dt
= a(t)v2.

(3.12)

This is a Lie system [14]. In fact, it describes the integral curves of the t -dependent vector field

XRS
t = a(t)X1 − b(t)X2 + c(t)X3,

where
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X1 = 4u2 ∂

∂u
+ 4uv

∂

∂v
+ v2 ∂

∂w
, X2 = ∂

∂u
, X3 = 2u

∂

∂u
+ v

∂

∂v

satisfy the commutation relations

[X1,X2] = −4X3, [X1,X3] = −2X1, [X2,X3] = 2X2.

Consider the presymplectic forms

ωRS−1 = −4wdu ∧ dw

v2
+ dv ∧ dw

v
+ 4w2du ∧ dv

v3
, ωRS−2 = −4du ∧ dw

v2
+ 8wdu ∧ dv

v3
.

(3.13)

Their kernels read

kerωRS−1 =
〈
v2 ∂

∂u
+ 4wv

∂

∂v
+ 4w2 ∂

∂w

〉
, kerωRS−2 =

〈
v

∂

∂v
+ 2w

∂

∂w

〉
.

Note that kerωRS−1 ∩kerωRS−2 = {0}. So, (ωRS−1, ωRS−2) is a two-symplectic structure. More-
over, X1, X2 and X3 are Hamiltonian vector fields relative to ωRS−1, ωRS−2:

ιX1ωRS−1 = d

(
4uw − 8

u2w2

v2
− v2

2

)
, ιX2ωRS−1 = −2d

(
w2

v2

)
,

ιX3ωRS−1 = d

(
w − 4

uw2

v2

)
, (3.14)

and

ιX1ωRS−2 = 4 d

(
u − 4

u2w

v2

)
, ιX2ωRS−2 = −4 d

(
w

v2

)
, ιX3ωRS−2 = −8 d

(
uw

v2

)
.

(3.15)

Let us consider a type of Lotka–Volterra systems, i.e. a system of the form

dxi

dt
= xi

(
bi(t) +

n∑
j=1

cij (t)xj

)
, i = 1, . . . , n,

for certain functions bi(t) and cij (t), that can be studied as a Lie system, namely its minimal 
Lie algebra is finite-dimensional. Systems of this type have already been studied by one of the 
authors of this work in [7]. We hereafter call these systems Lie–Lotka–Volterra systems. More 
specifically, consider the system

dx1

dt
= a(t)x1 + b(t)x2

1 ,
dx2

dt
= a(t)x2 + b(t)x2

2 ,
dx3

dt
= a(t)x3 + b(t)x2

3 ,

dx4 = a(t)x4 + b(t)x2
4 ,

dx5 = a(t)x5 + b(t)x2
5 . (3.16)
dt dt
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Observe that its associated t -dependent vector field reads

X = a(t)X1 + b(t)X2,

where

X1 =
5∑

i=1

xi

∂

∂xi

, X2 =
5∑

i=1

x2
i

∂

∂xi

satisfy [X1, X2] = X2. So, X admits a Vessiot–Guldberg Lie algebra isomorphic to the Lie alge-
bra of affine transformations on the real line. Let us show that this system is a four-symplectic 
Lie system. Consider the presymplectic forms

ω1 = dx1 ∧ dx2

(x1 − x2)2
+ dx3 ∧ dx4

(x3 − x4)2
, ω2 = dx1 ∧ dx2

(x1 − x2)2
+ dx3 ∧ dx5

(x3 − x5)2
,

ω3 = dx1 ∧ dx2

(x1 − x2)2
+ dx4 ∧ dx5

(x4 − x5)2
, ω4 = dx1 ∧ dx3

(x1 − x3)2
+ dx4 ∧ dx5

(x4 − x5)2
. (3.17)

Note that 
⋂4

i=1 kerωi = {0}. So (ω1, ω2, ω3, ω4) is a four-symplectic structure. Moreover X1
and X2 are Hamiltonian vector fields with respect to ωi with i = 1, . . . , 4:

ιX1ω1 = 1

2
d

(
x1 + x2

x1 − x2
+ x3 + x4

x3 − x4

)
, ιX2ω1 = d

(
x1x2

x1 − x2
+ x3x4

x3 − x4

)
,

ιX1ω2 = 1

2
d

(
x1 + x2

x1 − x2
+ x3 + x5

x3 − x5

)
, ιX2ω2 = d

(
x1x2

x1 − x2
+ x3x5

x3 − x5

)
,

ιX1ω3 = 1

2
d

(
x1 + x2

x1 − x2
+ x4 + x5

x4 − x5

)
, ιX2ω3 = d

(
x1x2

x1 − x2
+ x4x5

x4 − x5

)
,

ιX1ω4 = 1

2
d

(
x1 + x3

x1 − x3
+ x4 + x5

x4 − x5

)
, ιX2ω4 = d

(
x1x3

x1 − x3
+ x4x5

x4 − x5

)
. (3.18)

All above systems posses a Lie algebra of Hamiltonian vector fields relative to all the presym-
plectic forms of a k-symplectic structure. This suggests us the following definition.

Definition 3.1. Given a k-symplectic structure (ω1, . . . , ωk) on an n(k + 1) dimensional mani-
fold N , we say that a vector field Y on N is k-Hamiltonian if it is a Hamiltonian vector field with 
respect to the presymplectic forms ω1, . . . , ωk .

Note that X is a k-Hamiltonian vector field if and only if it is Hamiltonian for all the presym-
plectic forms of the space 〈ω1, . . . , ωk〉. In view of Theorem 2.10, two k-symplectic structures 
(ω1, . . . , ωk) and (ω′

1, . . . , ω
′
k) are equivalent if and only if 〈ω1, . . . , ωk〉 = 〈ω′

1, . . ., ω
′
k〉. So, if X

is k-Hamiltonian for a k-symplectic manifold, it is k-Hamiltonian for all equivalent k-symplectic 
manifolds. In addition, it also makes sense to say that X is Ω-Hamiltonian for a polysymplec-
tic form Ω if X is k-Hamiltonian for a k-symplectic manifold possessing Ω as an associated 
polysymplectic form. From now on, we will talk about k-Hamiltonian and/or Ω-Hamiltonian 
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vector fields indistinctly. We write Ham(Ω), where Ω is a polysymplectic form induced by 
(ω1, . . . , ωk), for the space of k-Hamiltonian vector fields.

In view of the above comments, it is justified to define k-symplectic Lie systems as follows.

Definition 3.2. We say that a system X is a k-symplectic Lie system if V X is a finite-dimensi-
onal real Lie algebra of k-Hamiltonian vector fields with respect to a k-symplectic structure 
(ω1, . . . , ωk). We call (ω1, . . . , ωk) a compatible k-symplectic structure.

Note that the above can be restated by saying that a system X on a manifold N is a 
k-symplectic Lie system if and only if it admits a Vessiot–Guldberg Lie algebra of k-Hamiltonian 
vector fields with respect to a certain k-symplectic structure on N . Observe that Lie–Hamilton 
systems [21] are a particular type of k-symplectic Lie systems. Nevertheless, we already com-
mented that not every k-symplectic Lie system is a Lie–Hamilton system (for more details see 
description of the system (3.2) and [14]).

Every k-symplectic Lie system can be considered as a Dirac–Lie system [14]. More specifi-
cally, if X is a k-symplectic Lie system relative to the k-symplectic structure (ω1, . . . , ωk), then 
V X is a family of Hamiltonian vector fields with respect to each one of the presymplectic forms 
ω1, . . . , ωk . So, V X is a Lie algebra of Hamiltonian vector fields relative to each Dirac struc-
ture Lωr induced by the presymplectic form ωr (see [14,24] for details). Following the notation 
of [14], we say that the triple (N, Lωr , X) is a Dirac–Lie system. Moreover, it can be proved that 
every Lie system can be considered as a Dirac–Lie system [14]. Meanwhile, not every Dirac–Lie 
system can be considered as a k-symplectic Lie system, e.g. a Lie system given by an autonomous 
vector field X �= 0 on the real line. Nevertheless, the main advantage of k-symplectic Lie systems 
is that they can be considered as Dirac–Lie systems in different ways. This suggests us to find a 
natural approach to the study of these systems, which is given by k-symplectic structures.

4. A no-go theorem for k-symplectic Lie systems

Determining whether a Lie system is a k-symplectic Lie system generally requires solving 
a system of PDEs to find a compatible k-symplectic structure. In many cases, it can be diffi-
cult to establish whether this system of PDEs has enough solutions giving rise to a compatible 
k-symplectic structure. That is why it is important to find simple necessary and/or sufficient 
conditions to ensure or to discard that a Lie system is a k-symplectic Lie system.

In this section we provide a no-go theorem giving conditions ensuring that a Lie system is 
not a k-symplectic Lie system. The main idea is that the minimal Lie algebra of the Lie system 
under study must leave stable, in the sense given next, the kernels of the presymplectic forms of 
any k-symplectic structure compatible with the Lie system. This condition is easier to verify than 
finding a compatible k-symplectic structure. Although we here provide only one main result, it 
is easy to develop further no-go theorems from our ideas.

Definition 4.1. We say that a distribution D is stable under the action of a Lie algebra V of vector 
fields when [X, Y ] ∈D for every Y ∈D and X ∈ V .

Definition 4.2. Given a finite-dimensional real Lie algebra V of vector fields on N , we say that 
V is s-primitive when there exists no distribution D of rank s stable under the action of V . We 
call V odd-primitive when V is s-primitive for every odd value of s < dimN .
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Remark 4.3. Observe that the above definition of s-primitive Lie algebra of vector fields is a 
generalisation of the notion of a primitive Lie algebra of vector fields on the plane given in [27].

Theorem 4.4 (No-go k-symplectic Lie systems theorem). If X is a Lie system on an odd dimen-
sional manifold N and V X is odd-primitive, then X is not a k-symplectic Lie system.

Proof. Let us suppose that there exists a compatible k-symplectic structure (ω1, . . . , ωk) for X. 
On an odd-dimensional manifold, every two-form of the k-symplectic structure has non-trivial 
odd-dimensional kernel. Let Z �= 0 be a vector field Z ∈ kerωi . As the elements of V X are 
Hamiltonian with respect to each one of the presymplectic forms of the k-symplectic structure, 
we have that LY ωi = 0 for every Y ∈ V X and

0 = LY ιZωi = ιZLY ωi + ι[Y,Z]ωi = ι[Y,Z]ωi.

So [Y, Z] ∈ kerωi and the kernel of ωi is stable under the action of the elements of V X . As V X

is odd-primitive and kerωi is odd-dimensional, we get a contradiction. Then, the compatible 
k-symplectic structure cannot exist. �
Example 1 (Lie systems on Lie groups). Let us consider the Lie systems on Lie groups of the 
form

dg

dt
=

r∑
α=1

bR
α (t)XR

α (g) +
r∑

α=1

bL
α (t)XL

α (g), g ∈ G, (4.1)

where G is a Lie group, XR
1 , . . . , XR

r and XL
1 , . . . , XL

r form basis of right and left-invariant 
vector fields on G respectively, and bL

1 (t), . . . , bL
r (t), bR

1 (t), . . . , bR
r (t) are arbitrary t -dependent 

functions. Additionally, we assume G to be connected.
Systems of the type (4.1) appear when searching for transformations mapping a Lie system 

into a new one, e.g. in a reduction process [19]. Additionally, each Lie system on a manifold can 
be solved by means of a particular solution of systems like (4.1) where only right-invariant or 
left-invariant vector fields appear. Moreover, such systems appear in Control Theory and Dar-
boux integrable systems [11,56]. An interesting question is to determine if such systems can be 
endowed with a compatible k-symplectic structure. As proved next, the answer is negative for a 
large family of systems (4.1).

Assume that (4.1) is such that G is odd-dimensional and its Lie algebra of left-invariant 
vector fields, g, has no odd-dimensional ideals, e.g. g is simple. Suppose also that the min-
imal Lie algebra V X of the system (4.1) is isomorphic (as a Lie algebra) to g ⊕ g, namely 
V X = 〈XR

1 , . . . , XR
r , XL

1 , . . . , XL
r 〉. Let us prove that the V X is odd-primitive by reduction to 

absurd.
Consider an odd-dimensional distribution D on G invariant under the action of V X . Since G

is connected, the invariance of D under XR
1 , . . . , XR

k implies that the vector fields taking values 
in D are invariant under the diffeomorphisms given by the left-hand multiplications on the group, 
namely the mappings Lg : g′ ∈ G 
→ g ·g′ ∈ G with g ∈ G. So, given De ⊂ TeG, i.e. the subspace 
of the distribution D at the neutral element e of G, we obtain that (Lg)∗Y ∈ Dg for every Y ∈De . 
Indeed, since Lg is a diffeomorphism, then De �Dg .

If YL is a left-invariant vector field on G with YL(e) = Y , we have that

YL(g) = (Lg)∗YL(e) ∈ Dg
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for every g ∈ G. So, YL takes values in D. Using that each (Lg)∗ is a diffeomorphism, we obtain 
that given a set of vector fields YL

1 , . . . , YL
s whose values YL

1 (e), . . . , YL
s (e) form a basis for De, 

then (YL
1 )(g), . . . , (YL

s )(g) form a basis of Dg for every g ∈ G. Consequently, D admits a global 
basis of left-invariant vector fields YL

1 , . . . , YL
s . As D is invariant under V X , then LXL

α
YL

j , with 
α = 1, . . . , dimG and j = 1, . . . , s, is a left-invariant vector field taking values in D. Hence,

[
XL

α ,YL
j

] ∈ 〈YL
1 . . . , YL

s

〉
and 〈YL

1 , . . . , YL
s 〉 is an odd-dimensional ideal of g. By assumption, g has no odd-dimensional 

ideals. This is a contradiction and we have that D is not invariant under V X . By Theorem 4.4, 
we obtain that (4.1) is not a k-symplectic Lie system.

5. On Ω-Hamiltonian functions

Every k-Hamiltonian vector field can be associated to a family h1, . . . , hk of Hamiltonian 
functions (each one relative to a different presymplectic form of a k-symplectic structure). It 
is convenient for the study k-symplectic Lie systems to introduce some generalisation of the 
Hamiltonian function notion for presymplectic forms to deal simultaneously with all h1, . . . , hk . 
In this section, we propose and analyse the properties of such a generalisation. Some of our 
results extend to our k-symplectic structures several theorems devised by Awane in [6] for a 
more particular type of k-symplectic structures.

Definition 5.1. Given a polysymplectic structure Ω = ∑k
i=1 ωi ⊗ ei on N , we say that h =

h1 ⊗ e1 + . . .+ hk ⊗ ek is an Ω-Hamiltonian function if there exists a vector field Xh on N such 
that ιXh

ωi = dhi for i = 1, . . . , k. In this case, we call h an Ω-Hamiltonian function for Xh. 
We write C∞(Ω) for the space of Ω-Hamiltonian functions.

We already illustrated that a polysymplectic form Ω depends on the chosen bases {e1, . . ., ek}
therefore, also the Ω-Hamiltonian function h. Nevertheless, if Ω and Ω̃ are two gauge equivalent 
polysymplectic forms then the sets C∞(Ω) and C∞(Ω̃) are the same up to a change of variables 
on Rk .

Observe that an Ω-Hamiltonian function is a certain type of Rk-valued Hamiltonian function. 
In [41], the author called k-Hamiltonian system associated to the Rk-valued Hamiltonian h the 
vector field Xh of the above definition. Moreover, Awane [6] called h a Hamiltonian map of X
when X is additionally an infinitesimal automorphism of a certain distribution on which it is 
assumed that the presymplectic forms of the k-symplectic distribution vanish.

Example 2. In view of the relations (3.14) and (3.15), the vector fields X1 = 4u2∂/∂u + 4uv∂/

∂v + v2∂/∂w, X2 = ∂/∂u and X3 = 2u∂/∂u + v∂/∂v have Ω-Hamiltonian functions

f =
(

4uw − 8
u2w2

v2
− v2

2

)
⊗ e1 +

(
4u − 16

u2w

v2

)
⊗ e2,

g = −2
w2

2
⊗ e1 − 4

w

2
⊗ e2, h =

(
w − 4

uw2

2

)
⊗ e1 − 8

uw

2
⊗ e2,
v v v v
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relative to the polysymplectic structure Ω = ωRS−1 ⊗ e1 + ωRS−2 ⊗ e2 obtained from the two-
symplectic structure (ωRS−1, ωRS−2) constructed from the presymplectic forms (3.13).

Proposition 5.2. Let Ω =∑k
i=1 ωi ⊗ei be a polysymplectic structure, every Ω-Hamiltonian vec-

tor field is associated, at least, to an Ω-Hamiltonian function. Conversely, every Ω-Hamiltonian 
function induces a unique Ω-Hamiltonian vector field.

Proof. The direct part is trivial. Let us prove the converse. By definition, each Ω-Hamiltonian 
function h = h1 ⊗ e1 + . . . + hk ⊗ ek is associated to, at least, one vector field Xh. Suppose that 
there exist two Ω-Hamiltonian vector fields X1 and X2 associated to h. Then, we have

ιX1ωi = ιX2ωi = dhi, i = 1, . . . , k

and

ιX1−X2ωi = 0, i = 1, . . . , k.

Since kerω1 ∩ . . . ∩ kerωk = {0}, it turns out that X1 = X2. �
Proposition 5.3. The space C∞(Ω) is a linear space over R with the natural operations:

h + g ≡
k∑

i=1

(hi + gi) ⊗ ei, λ · h ≡
k∑

i=1

λhi ⊗ ei

where h =∑k
i=1 hi ⊗ ei , g =∑k

i=1 gi ⊗ ei ∈ C∞(Ω) and λ ∈R.

Proof. Let Xh and Xg be the Ω-Hamiltonian vector fields associated to h and g, respectively. 
The linear combination λh + μg, with λ, μ ∈R, is an Ω-Hamiltonian function associated to the 
vector field λXh + μXg . Indeed,

ιλXh+μXgωi = d(λhi + μgi), i = 1, . . . , k.

Then, C∞(Ω) is closed relative to the defined addition of elements and multiplication by scalars. 
It is immediate that these operations give rise to a vector space structure on C∞(Ω). �
Proposition 5.4. The space C∞(Ω) becomes a Lie algebra when endowed with the bracket 
{·,·}Ω : C∞(Ω) × C∞(Ω) → C∞(Ω) of the form

{
h1 ⊗ e1 + . . . + hk ⊗ ek, h′

1 ⊗ e1 + . . . + h′
k ⊗ ek

}
Ω

= {h1, h
′
1

}
ω1

⊗ e1 + . . . + {hk,h
′
k

}
ωk

⊗ ek, (5.1)

where {·,·}ωi
is the Poisson bracket naturally induced by the presymplectic form ωi , with i =

1, . . . , k.
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Proof. Given two Ω-Hamiltonian functions h = ∑k
i=1 hi ⊗ ei , g = ∑k

i=1 gi ⊗ ei with 
Ω-Hamiltonian vector fields Xh and Xg , we have

ι[Xh,Xg]ωi = d{gi, hi}ωi
, i = 1, . . . , k.

Hence, {g, h}Ω is an Ω-Hamiltonian function with Hamiltonian vector field [Xh, Xg]. So, 
C∞(Ω) is closed with respect to this bracket, which is trivially antisymmetric and holds the 
Jacobi identity, which turns (C∞(Ω), {·,·}Ω) into a Lie algebra. �

We cannot ensure C∞(Ω) to be a Poisson algebra in a natural way. Observe that given h =∑k
i=1 hi ⊗ ei , g =∑k

i=1 gi ⊗ ei ∈ C∞(Ω), the function

h · g = (h1g1) ⊗ e1 + . . . + (hkgk) ⊗ ek (5.2)

is not in general a C∞(Ω)-function. Indeed,

d(higi) = gidhi + hidgi = ιgiXh
ωi + ιhiXgωi = ι(giXh+hiXg)ωi, i = 1, . . . , k.

In general, giXh + hiXg is different for each i and h · g is not an Ω-Hamiltonian function. For 
instance, consider again Example 2. The function

h · g = −2
w2

v2

(
w − 4

uw2

v2

)
⊗ e1 + 32

uw2

v4
⊗ e2

is not an Ω-Hamiltonian function for Ω = ωRS−1 ⊗ e1 +ωRS−2 ⊗ e2. Indeed, −2w2

v2 (w − 4uw2

v2 )

and 32uw2/v4 are related to the vector fields

g1Xh + h1Xg = −2w2

v2

(
2u

∂

∂u
+ v

∂

∂v

)
+
(

w − 4
uw2

v2

)
∂

∂u
,

g2Xh + h2Xg = −4w

v2

(
2u

∂

∂u
+ v

∂

∂v

)
− 8uw

v2

∂

∂u
,

which are different.
Since we cannot ensure that (C∞(Ω), ·, {·,·}Ω) is a Poisson algebra, we cannot neither say 

that {h, ·}Ω : g ∈ C∞(Ω) 
→ {g, h}Ω ∈ C∞(Ω), with h ∈ C∞(Ω), is a derivation with respect to 
the product (5.2) of Ω-Hamiltonian functions. This shows that k-symplectic geometry becomes 
quite different from Poisson and presymplectic geometry, where an equivalent of this result holds. 
Nevertheless, we can still ensure that {h, g}Ω = 0 for every locally constant function g and, 
moreover, we can still prove other properties of this Lie algebra. For instance, let us consider the 
following result.

Proposition 5.5. Consider a polysymplectic manifold (N, Ω). Every Ω-Hamiltonian vector field 
X acts as a derivation on the Lie algebra (C∞(Ω), {·,·}Ω) in the form

Xf = {f,h}Ω, ∀f ∈ C∞(Ω),

with h being an Ω-Hamiltonian function for X.
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Proof. Note that {f, h}Ω does not depend on the chosen Ω-Hamiltonian for X. Every two 
Ω-Hamiltonian functions related to the same Ω-Hamiltonian vector field differ on a constant 
(on each connected component on N ). So, if h1 and h2 are Ω-Hamiltonian functions for X, then 
{f, h1}Ω = {f, h2}Ω and Xf becomes well defined.

Now,

X{f,g}Ω = {{f,g}Ω,h
}
Ω

= {{f,h}Ω,g
}
Ω

+ {f, {g,h}Ω
}
Ω

= {Xf,g}Ω + {f,Xg}Ω.

Since X acts linearly on C∞(Ω), the results follows. �
Theorem 5.6. Given a polysymplectic form Ω =∑k

i=1 ωi ⊗ ei on a manifold N , we can define 
an exact sequence of Lie algebras:

0 ↪→
k︷ ︸︸ ︷

H0
dH(N) ⊕ . . . ⊕ H0

dH(N)↪→ C∞(Ω)
BΩ−→ Ham(Ω) → 0, (5.3)

where BΩ(f ) = −Xf is the Ω-Hamiltonian vector field corresponding to f and H0
dH(N) is the 

first De Rham cohomology group of N .

Proof. First, we prove that Ham(Ω) is a Lie algebra. In fact, given two Ω-Hamiltonian vector 
fields X and Y there are two Ω-Hamiltonian functions h and g such that X = Xh and Y = Yg

(see Proposition 5.2). Moreover, we have that ιXωi = dhi, ιY ωi = dgi for each i = 1, . . . , k. 
Therefore

ιλX+μY ωi = d(λhi + μgi), ι[X,Y ]ωi = d{gi, hi}ωi
, i = 1, . . . , k, ∀λ,μ ∈R.

Hence, the sum, the Lie bracket and the multiplication by scalars of Ω-Hamiltonian vector fields 
are Ω-Hamiltonian vector fields, that is, Ham(Ω) is a Lie algebra.

Once we have proved that all the spaces in (5.3) are Lie algebras, we turn to showing that the 
sequence is exact. The inclusions of 0 in H0

dH(N)⊕ k. . . ⊕H0
dH(N) and of H0

dH(N)⊕ k. . . ⊕H0
dH(N)

in C∞(Ω) are obviously Lie algebra morphisms. Likewise, the projection of Ham(Ω) onto 0 is 
also. If we take into account that the Lie bracket {f, g}Ω , where f and g are Ω-Hamiltonian 
functions with Ω-Hamiltonian vector fields Xf and Xg , admits an Ω-Hamiltonian vector field 
−[Xf , Xg], we obtain that BΩ({f, g}Ω) = [Xf , Xg]. In other words, BΩ is a Lie algebra mor-
phism.

Finally, observe that the kernel of BΩ is given by those Ω-Hamiltonian functions h related 
to a zero vector field. That means that dhi = 0 for i = 1, . . . , k. So, every hi is constant on each 
connected component Oj , with j = 1, . . . , p, of N and its value is determined by a constant on 
each Oj . This gives the isomorphism

kerBΩ � h 
→ (
h1(O1), . . . , h1(Op), . . . , hk(O1), . . . , hk(Op)

) ∈ H0
dH(N)⊕ k. . . ⊕H0

dH(N).

Using this, we clearly see that the given sequence is exact. �
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6. Derived Poisson algebras

Given a k-symplectic manifold (N, ω1, . . . , ωk), we can construct several Poisson algebras on 
certain subsets of C∞(N), the hereafter called derived Poisson algebras. This will become very 
important in following sections, where such derived Poisson algebras are employed to study the 
geometric properties of k-symplectic Lie systems.

The k-symplectic structure (ω1, . . . , ωk) along with a basis e1, . . . , ek for Rk and an element 
θ ∈ (Rk)∗ allow us to define a polysymplectic form Ω =∑k

i=1 ωi ⊗ ei . It is immediate that the 
contraction

Ωθ ≡ 〈Ω,θ〉 =
k∑

i=1

θ
(
ei
)
ωi

is a presymplectic form on N . We call Adm(Ωθ ) the set of admissible functions with respect 
to (N, Ωθ). We hereafter denote by Xf , with f being a function on N , a Hamiltonian vector 
field of f relative to a presymplectic form. Recall that when f is a k-Hamiltonian function, 
Xf denotes the k-Hamiltonian vector field associated to f .

Note that a vector field X is k-Hamiltonian if and only if it is Hamiltonian for all the presym-
plectic forms of the space 〈ω1, . . . , ωk〉. In particular, X is Hamiltonian for any presymplectic 
form Ωθ with θ ∈ (Rk)∗. This gives rise to the following proposition.

Proposition 6.1. Let Ω = ∑k
i=1 ωi ⊗ ei be a polysymplectic structure and θ ∈ (Rk)∗. Every 

Ω-Hamiltonian function gives rise to an admissible function with respect to (N, Ωθ).

Proof. If h = h1 ⊗ e1 + . . . + hk ⊗ ek is an Ω-Hamiltonian function, then there exists an 
Ω-Hamiltonian vector field Xh such that

ιXh
ωi = dhi, i = 1, . . . , k.

Thus, one has

ιXh
Ωθ =

k∑
i=1

θ
(
ei
)
ιXh

ωi =
k∑

i=1

θ
(
ei
)
dhi = dhθ ,

where hθ = 〈h, θ〉 =∑k
i=1 θ(ei)hi . Therefore hθ ∈ Adm(Ωθ ). �

Proposition 6.2. Let (ω1, . . . , ωk) be a k-symplectic structure and {e1, . . . , ek} a basis of Rk . 
The k-symplectic structure induces a k-polysymplectic form Ω =∑k

i=1 ωi ⊗ ei and a family of 
Poisson algebras (Adm(Ωθ ), ·, {·,·}θ ), where {·,·}θ is the Poisson bracket induced by the presym-
plectic form Ωθ , with θ ∈ (Rk)∗, on its space of admissible functions.

Proof. It is immediate that the sum and multiplication by scalars of admissible functions are ad-
missible functions. This turns Adm(Ωθ ) into a vector space. The product of functions is bilinear 
and commutative. Moreover, if h and g are admissible functions with Hamiltonian vector fields 
Xh and Xg , then h · g is an admissible function with Hamiltonian vector field gXh + hXg . So 
Adm(Ωθ ) is an R-algebra.
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If h and g are admissible functions with respect to (N, Ωθ) with Hamiltonian vector fields 
Xh and Xg , then {h, g}θ is an admissible function with Hamiltonian vector field [Xg, Xh]. So, 
for each θ ∈ (Rk)∗, Adm(Ωθ ) is closed with respect to this bracket, which is antisymmetric and 
holds the Jacobi and the Leibniz identity. Then, (Adm(Ωθ ), ·, {·,·}θ ) is a Poisson algebra for 
each θ . �
Proposition 6.3. Given a polysymplectic form Ω =∑k

i=1 ωi ⊗ ei , every Ω-Hamiltonian vector 
field Xh is a derivation on all the Lie algebras (Adm(Ωθ ), {·,·}θ ) with θ ∈ (Rk)∗ of the form

Xhf = {f,hθ }θ , ∀f ∈ Adm(Ωθ ). (6.1)

Proof. Note that Xhf = {f, hθ }θ ∈ Adm(Ωθ ) is well defined. Every two functions related to 
the same Hamiltonian vector field with respect to Ωθ differ in a locally constant function. So, if 
Xh1 = Xh2 , then Xh1f = {f, h1

θ }θ = {f, h2
θ }θ = Xh2f . Now,

Xh{f,g}θ = {{f,g}θ , hθ

}
θ

= {{f,hθ }θ , g
}
θ
+ {f, {g,hθ }θ

}
θ

= {Xhf,g}θ + {f,Xhg}θ . �
Proposition 6.4. Given a polysymplectic form Ω =∑k

i=1 ωi ⊗ ei , then

φθ : (C∞(Ω), {·,·}Ω
)→ (

Adm(Ωθ ), {·,·}θ
)

h 
→ hθ = 〈h, θ〉

is a Lie algebra morphism. Hence, every finite-dimensional Lie algebra (W ⊂ C∞(Ω), {·,·}Ω)

is a Lie algebra extension of the Lie algebra (φθ(W), {·,·}θ ).

Proof. Let g, h be two Ω-Hamiltonian functions. From (5.1) and (6.1), we obtain

φθ

({h,g}Ω
)=

k∑
i=1

θ
(
ei
){hi, gi}ωi

=
k∑

i=1

θ
(
ei
)
Xg(hi) = Xg(hθ ) = {hθ , gθ }θ ,

and φθ becomes a Lie algebra morphism. Moreover, we have the exact sequence of Lie algebras

0 ↪→
k︷ ︸︸ ︷(

H0
dR(N) ⊕ . . . ⊕ H0

dR(N)
) ∩W ↪→W φθ |W−→ φθ (W) → 0.

Therefore, (W, {·,·}Ω) is a Lie algebra extension of (φθ(W), {·,·}θ ). �
Proposition 6.5. For every polysymplectic manifold (N, Ω) we have the following commutative 
exact diagram:
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0 H0
dR(N)k

H0
dR(N)k W0 C∞(Ω)

φθ BΩ

Adm(Ωθ )

Λθ

W
φθ |W BΩ |W

Ham(Ω)

πθ |Ham(Ω)

Ham(Ωθ )
G(Ωθ )

BΩ(W)
πθ |BΩ(W)

0

where W0 = H0(N)k ∩W and we recall that G(Ωθ) is the space of gauge vector fields of Ωθ , we 
call πθ : X ∈ Ham(Ωθ ) 
→ [X] ∈ Ham(Ωθ )/G(Ωθ) the quotient map onto Ham(Ωθ )/G(Ωθ), 
and Λθ : Adm(Ωθ ) → Ham(Ωθ )/G(Ωθ) is the Lie algebra morphism mapping each f ∈
Adm(Ωθ ) to the class [−Xf ].

Proof. The only non-trivial part which does not follow from previous results of this section is to 
prove that the diagram

C∞(Ω)
BΩ

φθ

Ham(Ω)

πθ |Ham(Ω)

Adm(Ωθ )
Λθ Ham(Ωθ )

G(Ωθ )

is commutative. Using that Ham(Ω) ⊂ Ham(Ωθ ), we have that

dhθ = dφθ (h) = 〈dh, θ〉 = 〈ιXh
Ω, θ〉 = ιXh

Ωθ ⇒ [Xhθ ] = [Xh],

for an arbitrary h ∈ C∞(Ω). So,

πθ ◦ BΩ(h) = πθ (−Xh) = [−Xh] = [−Xhθ ] = Λθ(hθ ) = Λθ ◦ φθ (h)

and πθ ◦ BΩ = Λθ ◦ φθ . �
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7. k-Symplectic Lie–Hamiltonian structures

Let us further investigate the properties of the k-symplectic Lie systems provided in the previ-
ous sections. Consider again the Schwarzian equations in first-order form (3.2). Remind that 
Y1, Y2 and Y3 are Hamiltonian vector fields with respect to the presymplectic structures ω1
and ω2. In particular, from the relations (3.6) and (3.7), the vector fields Y1, Y2 and Y3 have 
Hamiltonian functions

h1
1 = 2

v
, h2

1 = a

v2
, h3

1 = a2

2v3
, (7.1)

and

h1
2 = −4x

v
, h2

2 = 2 − 2ax

v2
, h3

2 =
(

2a

v
− a2x

v3

)
, (7.2)

with respect to the presymplectic forms ω1 and ω2 given by (3.5), correspondingly. Moreover, 
we have{

h1
i , h

2
i

}
ωi

= −h1
i ,

{
h1

i , h
3
i

}
ωi

= −2h2
i ,

{
h2

i , h
3
i

}
ωi

= −h3
i , i = 1,2.

Consequently, the functions hα
i , with α = 1, 2, 3 and a fixed i, span a finite-dimensional real Lie 

algebra of functions isomorphic to sl(2, R). The same applies for hα
1 + hα

2 , with α = 1, 2, 3, and 
in general for any linear combination μ1h

α
1 + μ2h

α
2 , with fixed (μ1, μ2) ∈ R

2\{(0, 0)}. In this 
way, a k-symplectic structure is associated with many different Lie algebras of functions which 
can be employed to study the properties of the system.

Now, we consider the space C∞(Ω) of Ω-Hamiltonian functions given by the two-symplectic 
structure (ω1, ω2). From the relations (3.6) and (3.7), the functions

hα = hα
1 ⊗ e1 + hα

2 ⊗ e2,

with α = 1, 2, 3, span a finite-dimensional Lie algebra when endowed with the Lie bracket (5.1).
Thus, every X3KS

t is an Ω-Hamiltonian vector field with Ω-Hamiltonian function

h3KS
t = (h3

1 + b1(t)h
1
1

)⊗ e1 + (h3
2 + b1(t)h

1
2

)⊗ e2.

Since we assume b1(t) to be non-constant, the space Lie({h3KS
t }t∈R, {·,·}Ω) becomes a real Lie 

algebra isomorphic to sl(2, R).
If we now turn to the system of Riccati equations (3.8), we see that we can obtain a similar 

result. More specifically, the relations (3.10) and (3.11) imply that X1, X2 and X3 have Hamil-
tonian functions

h1
1 = 1

x1 − x2
+ 1

x3 − x4
, h2

1 = 1

2

(
x1 + x2

x1 − x2
+ x3 + x4

x3 − x4

)
, h3

1 = x1x2

x1 − x2
+ x3x4

x3 − x4

(7.3)

and
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h1
2 =

4∑
i,j=1
i≤j

1

xi − xj

, h2
2 = 1

2

(
4∑

i,j=1
i≤j

xi + xj

xi − xj

)
, h3

2 =
4∑

i,j=1
i≤j

xixj

xi − xj

. (7.4)

Moreover, we have that{
h1

i , h
2
i

}
ωi

= −h1
i ,

{
h1

i , h
3
i

}
ωi

= −2h2
i ,

{
h2

i , h
3
i

}
ωi

= −h3
i , i = 1,2.

Consequently, the functions hα
i , with α = 1, 2, 3 and a fixed i span a finite-dimensional real Lie 

algebra of functions.
Now, we consider the space C∞(Ω) of Ω-Hamiltonian functions given by the two-symplectic 

structure (ω1, ω2). From the relations (3.10) and (3.11), the functions

hα = hα
1 ⊗ e1 + hα

2 ⊗ e2,

with α = 1, 2, 3 span a finite-dimensional Lie algebra when endowed with the Lie bracket (5.1).
Thus, every XR

t is an Ω-Hamiltonian vector field with Ω-Hamiltonian function

hR
t = a(t)h1 + b(t)h2 + c(t)h3.

Again, we can associate X to a curve t → hR
t in a finite-dimensional real Lie algebra 

Lie({hR
t }t∈R, {·,·}Ω).

Both examples suggest us to define the following notions.

Definition 7.1. A k-symplectic Lie–Hamiltonian structure is a triple (N, Ω, h) where (N, Ω) is 
a polysymplectic manifold and h represents a t -parametrised family of Ω-Hamiltonian functions 
ht : N → R

k such that Lie({ht }t∈R, {·,·}Ω) is a finite-dimensional real Lie algebra.

Definition 7.2. A t -dependent vector field X is said to admit a k-symplectic Lie–Hamiltonian 
structure (N, Ω, h) if BΩ(ht ) = −Xt , for all t ∈ R.

Theorem 7.3. A system X admits a k-symplectic Lie–Hamiltonian structure if and only if it is a 
k-symplectic Lie system.

Proof. Let (N, Ω, h) be a k-symplectic Lie–Hamiltonian structure for X, then Lie({ht }t∈R,

{·,·}Ω) is a finite-dimensional real Lie algebra. Since BΩ is a Lie algebra morphism, then 
V = BΩ(Lie({ht }t∈R)) is a finite-dimensional real Lie algebra. As each vector field −Xt is 
Ω-Hamiltonian with an Ω-Hamiltonian function within {ht}t∈R, then {Xt }t∈R ⊂ V . Therefore, 
V X = Lie({Xt }t∈R) ⊂ V and X is a k-symplectic Lie system.

Conversely, if X is a k-symplectic Lie system, the vector fields {Xt}t∈R are contained in 
a finite-dimensional real Lie algebra of Ω-Hamiltonian vector fields V X . So, we can write 
Xt =∑r

α=1 bα(t)Xα for a basis {X1, . . . , Xr} for V X of Ω-Hamiltonian vector fields and certain 
t -dependent functions b1, . . . , br . In view of the sequence (5.3), the space B−1

Ω (V X) is a finite-
dimensional real Lie algebra of Ω-Hamiltonian functions. If h1, . . . , hr is a set of elements of 
C∞(Ω) with associated Ω-Hamiltonian vector fields X1, . . . , Xr , then ht =∑r

α=1 bα(t)hα is an 
Ω-Hamiltonian function and −BΩ(ht ) = Xt for every t ∈ R. Hence, h1, . . . , hr are contained 
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within the finite-dimensional Lie algebra B−1
Ω (V X) and (N, Ω, h) becomes a k-symplectic Lie–

Hamiltonian structure for X. �
8. On general properties of k-symplectic Lie systems

We now turn to describing the analogue for k-symplectic Lie systems of the basic properties 
of general Lie systems. Additionally, we show how the derived algebras enable us to investigate 
their t -independent constants of motion.

Recall that, as for every Lie system, the general solution x(t) of a k-symplectic Lie system X
on N can be brought into the form x(t) = ϕ(g(t), x0), where x0 ∈ N and ϕ: G ×N → N is a Lie 
group action. The ϕ plays another relevant rôle. It is known that if G is connected, every curve 
ḡ(t) in G induces a t -dependent change of variables mapping a Lie system X taking values in 
a Lie algebra V X into another Lie system Y , with general solution y(t) = ϕ(ḡ(t), x(t)), taking 
values in the same Lie algebra V X [12,17,18]. In the particular case of X being a k-symplectic 
Lie system, we have that V X consists of k-Hamiltonian vector fields with respect to some 
k-symplectic structure. Since the vector fields {Yt}t∈R belong to V X also, they are k-Hamiltonian 
vector fields and Y is again a k-symplectic Lie system.

Using again that x(t) = ϕ(g(t), x0), we see that the each particular solution of a Lie system 
X is contained within an orbit S of ϕ. Indeed, it is easy to see that the vector fields {Xt}t∈R
are tangent to such orbits and it makes sense to define the restriction X|S of X to each orbit S. 
Therefore, the integration of a Lie system X reduces to integrating its restrictions to each orbit 
of ϕ, which are Lie systems also. So, it is interesting to know whether X|S is again a k-symplectic 
Lie system. More generally, we want to know whether the restriction X|S of a k-symplectic Lie 
system X to a submanifold S ⊂ N , where it has sense to define X|S , is again a k-symplectic Lie 
system. This requires studying the notion of l-symplectic submanifold (l ≤ k) of a k-symplectic 
manifold (N, ω1, . . . , ωk).

Definition 8.1. Given a k-symplectic manifold (N, ω1, . . . , ωk), a submanifold S ⊂ N is said to 
be an l-symplectic submanifold with respect to (N, ω1, . . . , ωk), (l ≤ k) if dimS = nl(l + 1) for 
an integer nl and

(TpS)⊥,l ∩ TpS = {0}, ∀p ∈ S, (8.1)

where (TpS)⊥,l is the l-th orthogonal complement of TpS relative to the k-symplectic structure 
(N, ω1, . . . , ωk), i.e. TpS⊥,l = {v ∈ TpN : ω1(v, w) = . . . = ωl(v, w) = 0, ∀w ∈ TpS} [35].

Let us observe that the condition (8.1) is equivalent to

l⋂
i=1

(TpS)⊥i ∩ TpS = {0}, ∀p ∈ S, (8.2)

where (TpS)⊥i is the presymplectic annihilator of TpS, i.e. TpS⊥i = {v ∈ TpN : ωi(v, w) = 0,

∀w ∈ TpS}.
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It is easy to prove the following

Lemma 8.2. If (N, ω1, . . . , ωk) and (N, ω′
1, . . . , ω

′
k) are gauge equivalent and S ⊂ N is a sub-

manifold then

(TpS)⊥,k = (TpS)⊥′,k, ∀p ∈ S,

where (TpS)⊥,k and (TpS)⊥′,k are the k-th orthogonal k-symplectic to TpS with respect to 
(N, ω1, . . . , ωk) and (N, ω′

1, . . . , ω
′
k) respectively.

Notice that (TpS)⊥,l �= (TpS)⊥′,l in general for l < k. For instance, consider the linear ex-
ample given by N = R

3 with the gauge equivalent two-symplectic linear structures (ω1 =
e1 ∧ e3, ω2 = e2 ∧ e3) and (ω′

1 = e2 ∧ e3, ω′
2 = e1 ∧ e3), where {e1, e2, e3} its the dual of the 

canonical basis of R3. Then if S = span{e1}, we obtain

S⊥,1 = span{e1, e2} and S⊥′,1 = R
3.

Therefore, S⊥,1 �= S⊥′,1.

Lemma 8.3. Given a k-symplectic manifold (N, ω1, . . . , ωk) and a submanifold S ⊂ N , with 
ι : S ↪→ N a natural embedding, (ι∗ω1, . . . , ι∗ωl) is an l-symplectic structure on S if and only if 
S is an l-symplectic submanifold of (N, ω1, . . . , ωk).

Proof. It is a direct consequence of the following relation

l⋂
i=1

ker
(
ι∗ωi(p)

)=
l⋂

i=1

ker
(
ωi(p)

)∩ TpS = (TpS)⊥,l ∩ TpS, ∀p ∈ S. �

Observe that if a submanifold S ⊂ M is endowed with an l-symplectic structure
(ι∗ω1, . . . , ι∗ωl) with l < k, then for all l′ such that l ≤ l′ ≤ k (it is necessary that there exists nl′
such that dimS = nl′(l′ + 1)), (ι∗ω1, . . . , ι∗ωl′) is an l′-symplectic structure on S.

Proposition 8.4. Let (ω1, . . . , ωk) be a k-symplectic structure on N and X be a k-symplectic Lie 
system. Given an l-symplectic submanifold S such that DX ⊂ T S, the restriction of X to S is an 
l-symplectic Lie system.

Proof. Let X be a k-symplectic Lie system on N with respect to the k-symplectic structure 
(ω1, . . . , ωk). Then, V X is a finite-dimensional real Lie algebra of k-Hamiltonian vector fields, 
i.e. if Y ∈ V X , then Y is a Hamiltonian vector field with respect to ω1, . . . , ωk . Since DX ⊂ T S, 
we have that there exists X|S and V X|S = Lie({Xt |S}) is a finite-dimensional real Lie algebra of 
Hamiltonian vector fields with respect to ι∗ω1, . . . , ι∗ωl , with ι being the embedding ι : S ↪→ N . 
Therefore, the restriction of X to S is an l-symplectic Lie system. �

Let us now turn to describing several properties of constants of motion for Lie systems.
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Proposition 8.5. Let X be a k-symplectic Lie system on a manifold N with k-symplectic 
Lie–Hamiltonian structure (N, Ω, h). For each θ ∈ (Rk)∗, the space IX

θ of t -independent con-
stants of motion of X admissible relative to Ωθ is a Poisson algebra with respect to each Poisson 
bracket {·,·}θ induced by Ωθ .

Proof. Let f1, f2 : N → R be two t -independent constants of motion for X, i.e. Xtfi = 0, for 
i = 1, 2 and t ∈ R. As X is a k-symplectic Lie system, all the elements of V X are Hamilto-
nian vector fields with respect to each Ωθ with θ ∈ (Rk)∗. Hence, we can write Xt{f, g}θ =
{Xtf, g}θ + {f, Xtg}θ for every f, g ∈ Adm(Ωθ ) and t ∈ R (see Proposition 6.3). In particu-
lar, Xt {f1, f2}θ = {Xtf1, f2}θ + {f1, Xtf2}θ = 0 for every t ∈ R, i.e. the Poisson bracket of 
t -independent constants of motion admissible relative to Ωθ is a new one. As λf1 + μf2 and 
f1 · f2 are also t -independent constants of motion for every λ, μ ∈ R, it follows that IX

θ is a 
Poisson algebra with the bracket {·,·}θ induced by the presymplectic form Ωθ . �

Let us prove some final interesting results about the t -independent constants of motion for 
k-symplectic Lie systems.

Proposition 8.6. Let X be a k-symplectic Lie system on a manifold N with k-symplectic Lie 
Hamiltonian structure (N, Ω, h). For each θ ∈ (Rk)∗, the function f : N → R is a constant of 
motion for X admissible relative to Ωθ if and only if f Poisson commutes with all elements of 
each φθ (Lie({ht }t∈R, {·,·}Ω)).

Proof. The function f ∈ Adm(Ωθ ) is a t -independent constant of motion for X if and only if

0 = Xtf = {f, 〈ht , θ〉}
θ
, ∀t ∈R, ∀θ ∈ (Rk

)∗
. (8.3)

From here,

{
f,
{〈ht , θ〉, 〈ht ′ , θ〉}

θ

}
θ

= {{f, 〈ht , θ〉}
θ
, 〈ht ′ , θ〉}

θ
+ {〈ht , θ〉,{f, 〈ht ′ , θ〉}

θ

}
θ

= 0, ∀t, t ′ ∈ R,

and inductively follows that f Poisson commutes with all successive Poisson brackets of ele-
ments of {〈ht , θ〉}t∈R and their linear combinations. As these elements span φθ(Lie({ht }t∈R)), 
we get that f Poisson commutes with φθ(Lie({ht }t∈R)).

Conversely, if f Poisson commutes with φθ(Lie({ht }t∈R)), it Poisson commutes with the 
elements 〈{ht }t∈R, θ〉, and, in view of (8.3), it becomes a constant of motion for X admissible 
relative to Ωθ . �

Observe that every autonomous Hamiltonian system is a k-symplectic Lie system with re-
spect to a symplectic form ω. Thus, it possesses a k-Hamiltonian structure (N, Ω, h) with h
being a t -independent Hamiltonian. In consequence, the above proposition shows that the time-
independent first-integrals for a Hamiltonian system are those functions that Poisson commute 
with its Hamiltonian, recovering as a particular case this well-known result.
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9. Prolongations of k-symplectic Lie systems

Our concern in this section is to prove that given a k-symplectic Lie system, its prolonga-
tions are also k-symplectic Lie systems. This enables us to apply our techniques to obtain some 
of their t -independent constants of motion and, through them, the superposition rule for initial 
(non-prolongated) k-symplectic Lie system [16]. To do so, let us define the prolongation of a 
section of a vector bundle (see [14] for details).

Let τ : E → N be a vector bundle. Its diagonal prolongation to Nm is the Cartesian product 
bundle E[m] = E × · · · × E of m copies of E, viewed as a vector bundle over Nm in a natural 
way:

E
[m]
(x(1),...,x(m))

� Ex(1)
⊕ · · · ⊕ Ex(m)

.

Every section e : N → E of E has a natural diagonal prolongation to a section e[m] of E[m]:

e[m](x(1), . . . , x(m)) = e(x(1)) + · · · + e(x(m)).

Given a function f : N → R, we call diagonal prolongation of f to Nm the function 
f̃ [m](x(1), . . . , x(m)) = f (x(1)) + . . . + f (x(m)).

The above construction can be used to define the diagonal prolongation of a t -dependent 
vector field X on N , let us say

Xt =
n∑

l=1

Xl(t, x)
∂

∂xl
.

Its diagonal prolongation to Nm is the unique t -dependent vector field X̃[m] on Nm such that 
X̃

[m]
t = X

[m]
t for each t ∈ R, namely

X
[m]
t =

m∑
a=1

n∑
l=1

Xl(t, x(a))
∂

∂xl
(a)

,

where {xl
(a) | a = 1, . . . , m, l = 1, . . . , n = dimN} is the coordinate system on Nm given by 

defining xl
(a)(x(1), . . . , x(m)) = xl(x(a)) for points x(1), . . . , x(m) ∈ N .

Proposition 9.1. If X is a k-symplectic Lie system relative to (ω1, . . . , ωk), then X̃[m] is a 
k-symplectic Lie system relative to (ω[m]

1 , . . . , ω[m]
k ).

Proof. Let us consider the diagonal prolongations ω[m]
1 , . . . , ω[m]

k . The differential of the di-
agonal prolongation of a differential form is the diagonal prolongation of the differential form 
(cf. [14]). Hence, ω[m]

1 , . . . , ω[m]
k are closed. Let us show that

D ≡
k⋂

kerω[m]
i = {0}.
i=1
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We define πr : Nm → N to be the projection of Nm onto the r-th component of Nm. If X takes 
values in D, then

0 = ω
[m]
i

(
X,

∂

∂x
j

(r)

)
= (π∗

r ωi

)(
X,

∂

∂x
j

(r)

)
, i = 1, . . . , k, j = 1, . . . ,dimN.

Hence, (πr)∗X ∈⋂k
i=1 ker(π∗

r ωi) = 0. So, (πr)∗X = 0. Repeating the same for each r , we ob-
tain X = 0. Therefore, (ω[m]

1 , . . . , ω[m]
k ) is a k-symplectic structure. �

Definition 9.2. Given a polysymplectic form Ω =∑k
i=1 ωi ⊗ ei on N , its diagonal prolongation 

to Nm is the polysymplectic form Ω [m] =∑k
i=1 ω

[m]
i ⊗ ei .

Let us illustrate the above notion through a remarkable example. Consider again the 
Schwarzian equation (3.1) as a first-order system. Several works have dealt with a superposi-
tion rule for such equations [14,39]. To obtain such a superposition rule, these works obtained 
three functionally independent t -independent constants of motion for the diagonal prolongation 
of (3.1) to O[2]

2 . Let us derive such constants of motion through the methods of this work in order 
to show the advantages of our approach.

Schwarzian equations are related to a two-symplectic structure (ω1, ω2) on O2 given by (3.5). 
In view of Proposition 9.1, their prolongations to O[2]

2 give rise to a two-symplectic structure 
on O[2]

2 . Indeed, we have that the prolongations of ω1 and ω2 to O[2]
2 read

ω
[2]
1 =

2∑
i=1

dv(i) ∧ da(i)

v(i)

,

ω
[2]
2 = −

2∑
i=1

2

v3
(i)

(x(i)dv(i) ∧ da(i) + v(i)da(i) ∧ dx(i) + a(i)dx(i) ∧ dv(i)).

Their kernels are given by

kerω[2]
1 =

〈
∂

∂x(1)

,
∂

∂x(2)

〉
, kerω[2]

2 =
2⊕

i=1

〈
x(i)

∂

∂x(i)

+ v(i)

∂

∂v(i)

+ a(i)

∂

∂a(i)

〉
.

As proved in Proposition 9.1, both kernels have zero intersection. Using (3.6) and (3.7), we obtain 
that the k-Hamiltonian functions for the diagonal prolongations to the vector fields (3.3) to O[2]

2
read

h1,[2] =
2∑

i=1

(
2

v(i)

⊗ e1 − 4x(i)

v(i)

⊗ e2
)

, h2,[2] =
2∑

i=1

[
a(i)

v2
(i)

⊗ e1 +
(

2 − 2a(i)x(i)

v2
(i)

)
⊗ e2

]
and

h3,[2] =
2∑[

a2
(i)

2v3
⊗ e1 +

(
2a(i)

v(i)

− a2
(i)x(i)

v3

)
⊗ e2

]
.

i=1 (i) (i)
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It follows that{
h1,[2], h2,[2]}

Ω [2] = h1,[2],
{
h1,[2], h3,[2]}

Ω [2] = 2h2,[2],
{
h2,[2], h3,[2]}

Ω [2] = h3,[2].

So, these functions close a Lie algebra isomorphic to sl(2, R). Next, we will use the derived 
algebras to obtain several t -independent constants of motion for these systems.

We can induce from Ω [2] several presymplectic structures Ω [2]
ξ contracting Ω [2] with an 

element of ξ ∈ (R2)∗, i.e. Ω [2]
ξ = 〈Ω [2], ξ 〉. For instance, let {θ1, θ2} be the dual basis to {e1, e2}. 

We therefore have the presymplectic forms

Ωξ1 ≡ 〈Ω [2], θ1
〉= ω

[2]
1 , Ωξ2 ≡ 〈Ω [2], θ2

〉= ω
[2]
2 .

From Proposition 6.4, the Hamiltonian functions (h1,[2])ξ , (h2,[2])ξ , (h3,[2])ξ , for every
ξ ∈ (R2)∗, span a real Lie algebra W such that sl(2, R) is a Lie algebra extension. Since sl(2, R)

is simple, W is isomorphic to sl(2, R) or zero.
If the Lie algebra is isomorphic to sl(2, R), it was proved in [14] that {Cξ , (hi)ξ }ξ = 0, where 

i = 1, 2, 3, the bracket {·,·}ξ is the Poisson bracket on the space of admissible functions of Ω [2]
ξ

and

Cξ = (h1,[2])
ξ

(
h3,[2])

ξ
− (h2,[2])2

ξ
.

It is relevant that Cξ can be obtained from a Casimir element of a Lie algebra isomorphic to 
sl(2, R) constructed induced by h1,[2], h2,[2], h3,[2]. Observe that Cξ is a t -independent constant 
of motion for the prolongated system X̃[2]

3KS. More generally, a similar procedure can be developed 
for other Lie algebras of functions associated to k-symplectic Lie systems.

If we write ξ = λ1θ1 + λ2θ2, with λ1, λ2 ∈R, we have that

Cξ = [λ1
(
h1,[2])

ξ1
+ λ2

(
h1,[2])

ξ2

][
λ1
(
h3,[2])

ξ1
+ λ2

(
h3,[2])

ξ2

]− [λ1
(
h2,[2])

ξ1
+ λ2

(
h2,[2])

ξ2

]2
and

Cξ = λ2
1

[(
h1,[2])

ξ1

(
h3,[2])

ξ1
− (h2,[2])2

ξ1

]+ λ2
2

[(
h1,[2])

ξ2

(
h3,[2])

ξ2
− (h2,[2])2

ξ2

]
+ λ1λ2

[(
h1,[2])

ξ1

(
h3,[2])

ξ2
+ (h3,[2])

ξ1

(
h1,[2])

ξ2
− 2
(
h2,[2])

ξ2

(
h2,[2])

ξ1

]
.

So, we can write Cξ = λ2
1Cξ1 + λ2

2Cξ2 + λ1λ2Fξ1ξ2 where Cξ1 , Cξ2 and Fξ1ξ2 are three constants 
of motion given by

Cξ1 = (h1,[2])
ξ1

(
h3,[2])

ξ1
− (h2,[2])2

ξ1
= (a2v1 − a1v2)

2

v3
1v3

2

,

Cξ2 = (h1,[2])
ξ2

(
h3,[2])

ξ2
− (h2,[2])2

ξ2

= −4

(
−x1x2 + 2v1v2(v1x2 − v2x1)

a v − v a

)
(a2v1 − a1v2)

2

v3v3
− 42,
1 2 1 2 1 2



2252 J. de Lucas, S. Vilariño / J. Differential Equations 258 (2015) 2221–2255
Fξ1ξ2 = (h1,[2])
ξ1

(
h3,[2])

ξ2
+ (h3,[2])

ξ1

(
h1,[2])

ξ2
− 2
(
h2,[2])

ξ2

(
h2,[2])

ξ1

= −2(a2v1 − v2a1)
2

v3
1v3

2

(
x1 + x2 − 2v1v2(v1 − v2)

a1v2 − v1a2

)
.

Using that Cξ1 is a t -independent constant of motion, Cξ2, Fξ1ξ2 allow us to define three sim-
pler t -independent constants of motion F1, F3, F4:

F1 = x1x2 − 2v1v2(v1x2 − v2x1)

a1v2 − v1a2
, F3 = x1 + x2 − 2v1v2(v1 − v2)

a1v2 − v1a2
,

F4 =
√

F 2
3 − 4F1 + 16

Cξ1

= x1 − x2 − 2v1v2(v1 + v2)

a1v2 − v1a2
.

The t -independent constants of motion Cξ2, F3 and F4 are the first-integrals employed in [14,39]
to obtain the superposition rule for Schwarzian equations in first-order form. In those works, 
Cξ2 , F3, F4 were obtained by means of several geometric methods. In [39] they were derived by 
means of the method of characteristics, which is quite long and tedious. In [21], the techniques for 
Dirac–Lie systems enabled us to obtain F1 and Cξ2 . Meanwhile, F4 had to be obtained through 
a Lie symmetry. In this work, Cξ2, F3, F4 appear simultaneously from the k-symplectic struc-
ture of Schwarzian equations. This is the key point of the usefulness of this approach to obtain 
superposition rules. The k-symplectic structure provides a framework to exploit the geometric 
properties of k-symplectic Lie system better than Dirac–Lie systems.

10. Conclusions and outlook

We have described the main properties of a new type of Lie systems, the k-symplectic Lie 
systems. This has led to construct new Poisson structures related to k-symplectic structures 
as well as the description of new methods to study Lie systems, e.g. their superposition rules, 
constants of motion, etc. One of the advantages of the k-symplectic structures is that only the 
k-symplectic structures provide a geometric framework containing all the geometric structure 
of a k-symplectic Lie system. At present, the k-symplectic geometry is applied to the study of 
first-order classical field theories. Finally, since we use this geometrical structures for studying 
systems of ordinary differential equations, this paper opens a new setting of applications of the 
k-symplectic structures.

In the future we aim to develop a theory of momentum maps for k-symplectic Lie systems 
as well as to study the structure of restrictions of k-symplectic Lie systems to k-symplectic 
isotropic/coisotropic and Lagrangian k-symplectic submanifolds. We also aim to investigate in 
depth the existence of k-symplectic Lie systems on R3.

Moreover, we plan to extend our methods to the realm of the so-called PDE Lie systems: 
the natural generalisation of Lie systems to partial differential equations. It seems that the 
k-symplectic theory can be employed in this topic to provide a new geometric framework for 
the description of such systems. We hope to apply our findings to new interesting PDE Lie sys-
tems of relevance.
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