JOURNAL OF DIFFERENTIAL EQUATIONS | 卷:261 |
Splitting scheme for the stability of strong shock profile | |
Article | |
Du, Linglong1  | |
[1] Donghua Univ, Dept Appl Math, Shanghai, Peoples R China | |
关键词: Splitting scheme; Strong shock profile; Dirichlet-Neumann map; Conservation law; Nonlinear stability; | |
DOI : 10.1016/j.jde.2016.06.018 | |
来源: Elsevier | |
【 摘 要 】
In this paper, we use the Laplace transform and Dirichlet-Neumann map to give a systematical scheme to study the small wave perturbation of general shock profile with general amplitude. Here we use certain non-classical shock waves for a rotationally invariant system of viscous conservation laws to demonstrate this scheme. We derive an explicit solution and show that it converges pointwise to another over-compressive profile exponentially, when the perturbations of the initial data to a given over-compressive shock profile are sufficiently small. (C) 2016 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jde_2016_06_018.pdf | 288KB | download |