期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:266
Strong convergence rate of splitting schemes for stochastic nonlinear Schrodinger equations
Article
Cui, Jianbo1,2  Hong, Jialin1,2  Liu, Zhihui1,2,4  Zhou, Weien3,5 
[1] Chinese Acad Sci, LSEC, Acad Math & Syst Sci, ICMSEC, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[3] Natl Univ Def Technol, Coll Sci, Changsha, Hunan, Peoples R China
[4] Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Clear Water Bay, Hong Kong, Peoples R China
[5] Natl Innovat Inst Def Technol, Unmanned Syst Res Ctr, Beijing, Peoples R China
关键词: Stochastic nonlinear Schrodinger equation;    Strong convergence rate;    Exponential integrability;    Splitting scheme;    Non-monotone coefficients;   
DOI  :  10.1016/j.jde.2018.10.034
来源: Elsevier
PDF
【 摘 要 】

In this paper, we show that solutions of stochastic nonlinear Schrodinger (NLS) equations can be approximated by solutions of coupled splitting systems. Based on these systems, we propose a new kind of fully discrete splitting schemes which possess algebraic strong convergence rates for stochastic NLS equations. Key ingredients of our approach are using the exponential integrability and stability of the corresponding splitting systems and numerical approximations. In particular, under very mild conditions, we derive the optimal strong convergence rate O(N-2 + tau(1/2)) of the spectral splitting Crank-Nicolson scheme, where N and tau denote the dimension of the approximate space and the time step size, respectively. (C) 2018 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2018_10_034.pdf 1823KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次