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Abstract

In this paper, we use the Laplace transform and Dirichlet–Neumann map to give a systematical scheme to 
study the small wave perturbation of general shock profile with general amplitude. Here we use certain non-
classical shock waves for a rotationally invariant system of viscous conservation laws to demonstrate this 
scheme. We derive an explicit solution and show that it converges pointwise to another over-compressive 
profile exponentially, when the perturbations of the initial data to a given over-compressive shock profile 
are sufficiently small.
© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Consider the following simple rotationally invariant system originated from the study of MHD 
and nonlinear elasticity by Freistühler [3],

{
ũt + (ũ(ũ2 + ṽ2))x = μũxx,

ṽt + (ṽ(ũ2 + ṽ2))x = μṽxx.
(1.1)

The characteristics are
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r1(ũ, ṽ) = (ṽ,−ũ), r2(ũ, ṽ) = (ũ, ṽ), λ1(ũ, ṽ) = ũ2 + ṽ2, λ2(ũ, ṽ) = 3λ1(ũ, ṽ). (1.2)

The 1-characteristic is linearly degenerate and the 2-characteristic is genuinely nonlinear except 
at the origin

∇λ1 · r1(ũ, ṽ) = 0, ∇λ2 · r2(ũ, ṽ) = 6(ũ2 + ṽ2). (1.3)

A viscous shock wave has end states along the same radial direction through the origin, i.e., 
in the direction of r2(ũ, ṽ). The system is rotational invariant and so, without loss of generality, 
consider the end states to have the second component zero (ũ±, 0). When ũ± are of the same sign, 
the shock is classical, and there is only one connecting orbit along the ũ− axis. When ũ+ < 0, 
the shock may cross the non-strictly hyperbolic point (ũ, ṽ) = 0 and becomes over-compressive.

Here we are interested in over-compressive shock, which is characterized by

λ2(ũ−, ṽ−) > λ1(ũ−, ṽ−) > b > λ2(ũ+, ṽ+) > λ1(ũ+, ṽ+), (1.4)

b is the speed of over-compressive shock. (1.4) implies that the over-compressive shock is a 
node–node connection. Thus when exists, there is a 1-parameter family of viscous profiles. More 
details about the over-compressive shock will be given in the Section 2.

The goal of this paper is to prove that the over-compressive shock profiles for (1.1) can be 
stable against small perturbations using our new approach: given the profile � = (φ, ψ) of an 
(appropriate) over-compressive shock profile, and a function (ũ0(x), ṽ0(x)) (of appropriate type) 
such that

(
u0(x)

v0(x)

)
≡

(
ũ0(x)

ṽ0(x)

)
− � (1.5)

is small (in an appropriate sense), then the solution (ũ, ṽ) of (1.1) with initial data (ũ0(x), ṽ0(x))

converges time-asymptotically to another profile �∗ = (φ∗, ψ∗). We give the pointwise conver-
gence rate to the new profile.

Since there is a 1-parameter family of viscous shocks with given end states, the stability of the 
shock profile is to be understood in the following way: the perturbation of a stable shock profile 
would converge to the same or another profile in the 1-parameter family. Thus, in addition to the 
phase shift, the perturbation also changes the time-asymptotic profile of the solution. Therefore, 
instead of using the conservation laws to identify the phase shift and diffusion waves as for 
the Laxian shocks, we use the two conservation laws to identify the phase shift and the new 
profile. This should make the situation well-posed as we have two conservation laws and the 
same number of parameters to determine. Here and thereafter, we set μ = 1 without loss of 
generality.

The main theorem is given as follows:

Theorem 1.1 (Main Theorem). Give an over-compressive shock profile � = (φ, 0) with the shock 
speed b. Let C be a universal positive constant, and let the initial perturbation defined by (1.5)
satisfy |u0(x), v0(x)| ≤ O(1)εe−|x|/C . Then for ε sufficiently small, there exists a unique profile 
�∗ with �(±∞) = �∗(±∞), such that the solution of (1.1) satisfies:
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∣∣∣∣∣
{

ũ(x, t)

ṽ(x, t)

}
− �∗(x − bt − x0)

∣∣∣∣∣ ≤ O(1)εe−(|x−bt |+t)/C.

Here the constant x0 and profile �∗ are determined by

∫
R

(u0, v0)(x)dx =
∫
R

((φ∗,ψ∗)(x − bt − x0) − (φ,ψ)(x − bt))dx.

The stability of viscous shock profile has been studied widely, as an issue of physical im-
portance and interest, for example [3,4,9–11,15,17]. However, many existing stability results for 
systems depend much on the assumptions of weak shock strength, see [11,13,16]. The purpose 
of this paper is to present a unified approach of studying small wave perturbation around the 
general shock profile with general amplitude. Our method involves an interesting blend of the 
Laplace transformation and Dirichlet–Neumann map introduced by Liu and Yu [12], described 
in Section 2. Although the shock we considered is over-compressive (no transversal waves in the 
solution) and the technical difficulty in our model is similar to those in [6,7,15], one could apply 
this scheme to other type of shocks because it doesn’t require much restrictive assumptions. The 
advantage of our splitting scheme is that it can give the sharp pointwise analysis of each part by 
separating the hyperbolic wave structure in the far fields and local structure around shock front. 
We will use this method to study the Lax shock wave of discrete Boltzmann equation in the near 
future. For another interesting functional analytic approach to the stability of general viscous 
shock waves, one could see series of results by Zumbrun and various collaborators, e.g. [14,17]. 
That method is based on the framework of the Evans-function criterion method including Gap 
Lemma [5], functional analysis and semigroup method, generalizing the earlier work by [15].

Now we outline the ingredients of splitting scheme to elaborate the ideas of our new approach. 
It is used to handle the linearized system around the general amplitude profile φ:

{
ut + (f (φ)u)x = uxx,

u(x,0) = u0(x),
(1.6)

with

⎧⎪⎨
⎪⎩

φ(±∞) = M±,

|φ′(x)| = O(1)e−|x|/C,

|u0(x)| = O(1)εe−|x|/C.

The scheme is carried out in three steps and we study the structure of the linear wave propagation 
around the profile.

In the first step, we obtain a non-decaying structure which is caused by initial data through 
the standard procedure. This is done in Section 3.1 with approximate manipulations. The non-
decaying component is defined as β(t)�(x), has the property that

⎧⎨
⎩

|β ′(t)| = O(1)ε e−C1 t√
t+1

,

|�(x)| = O(1)e−|x|/C.
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�(x) is the stationary solution of (1.6) with �(±∞) = 0. With this observation, we extract the 
non-decaying part precisely. Otherwise, one would fail to get the nonlinear stability.

The remainder z(x, t) ≡ u(x, t) − β(t)�(x) satisfies the following

{
zt + (f (φ)z)x = zxx + S(x, t),

|z(x,0)| = 0, |S(x, t)| = O(1)εe−(|x|+t)/C.
(1.7)

In the second step, we construct a new function to approximate the remainder, which satisfies 
a modified error equation:

{
rt + (f (φL)r)x = rxx + S(x, t),

r(x,0) = z(x,0),
(1.8)

where

φL(x) =

⎧⎪⎨
⎪⎩

φ(∞) if x ≥ L,

φ(x) if |x| < L,

φ(−∞) if x ≤ −L,

(1.9)

choosing L sufficiently large, L = O(1)| ln ε|. Here we only modify the values of the shock 
profile at far fields. Due to this modification, one can split the whole space domain into three 
parts: the far field (−∞, −L], [L, ∞), and finite domain region [−L, L]. This is similar to the 
work by Kreiss [6,7]. Convergence rate of r(x, t) at each boundary can be obtained through the 
wave interactions in these three domains.

When |x| > L, (1.8) turns to be a constant coefficient problem. The solvability condition for 
the constant coefficient problem in each far field gives a Dirichlet–Neumann map:

Ls[r]x(−L−, s) = D1Ls[r](−L−, s) + I1(−L−, s), (1.10)

Ls[r]x(L+, s) = D2Ls[r](L+, s) + I2(L+, s). (1.11)

D1 and D2 are Dirichlet–Neumann kernels defined by (2.5), I1 and I2 are terms due to initial 
datum and source term S(x, t).

In the finite domain, we introduce a transition function G(x, s) in the Laplace space which 
satisfies: ⎧⎪⎨

⎪⎩
sG − f (φL)Gx − Gxx = 0,

G(−L, s) = 1,

Gx(−L, s) = −D1 − f (φL)(−∞).

(1.12)

Applying the Laplace transformation to the first equation in (1.8) with respect to time variable t , 
we multiply the transformed equation with G(x, s), integrate in the domain [−L, L],

L∫
G(x, s) (sLs[r] + (f (φL)Ls[r])x −Ls[r]xx − z(x,0) −Ls[S](x, s)) dx = 0.
−L
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Integrating by parts, with the help of C1 continuity of r at x = −L and the special boundary 
datum in (1.12), we have

I1(−L, s) +
L∫

−L

G(x, s)Ls[S](x, s)dx

= (Gf (φL)Ls[r] − GLs[r]x + GxLs[r])|L, (1.13)

which gives another relationship for Ls[r]x(L, s) and Ls[r](L, s).
Combining (1.11), (1.13) and C1 continuity of r at x = L together, we identify Ls[r]x(L, s)

and Ls[r](L, s). Similarly one can get the boundary information at x = −L.
Once the boundary information is clear, one could solve the problem (1.8) in each domain 

respectively. In the far fields, we only need to consider the constant-coefficient initial boundary 
problem. The behavior of solution in the finite domain can be obtained through the standard PDE 
method.

The truncation error of the above approximation e(x, t) ≡ z(x, t) − r(x, t) satisfies:

{
et + (f (φ)e)x = exx + ((f (φL) − f (φ))r)x,

e(x,0) = 0.
(1.14)

This is similar to system (1.7) and hence we can construct it’s solution by iteration.
In the third step, we introduce an iterative scheme:

⎧⎪⎨
⎪⎩

r0 = r,

e0 = z,

ek = ek−1 − rk−1, k ≥ 1.

rk is the approximate solution of ek . The smallness and pointwise localization property of rk will 
assure that the series of errors 

∑∞
j=0 rj obtained in each iterative step converges and establish 

the wave propagation patterns for system (1.7).
The plan of this paper is the following: some preliminary preparations are given in Section 2; 

in Section 3, we apply the splitting scheme to solve the linear decoupled system and give the 
pointwise estimate of the Green’s function; the nonlinear stability of perturbation for the general 
shock profile is proved in Section 4.

2. Preliminaries

2.1. Profiles of over-compressive shocks

Profile (φ, ψ) of any viscous shock wave is a heteroclinic orbit of the O.D.E. system

φ′ = (φ2 + ψ2 − b)φ − b1,

ψ ′ = (φ2 + ψ2 − b)ψ − b2, (2.1)

the speed b and the relative flux b1, b2 are given by the Rankine–Hugoniot conditions:
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(ũ2+ + ṽ2+ − b)ũ+ = (ũ2− + ṽ2− − b)ũ− = b1,

(ũ2+ + ṽ2+ − b)ṽ+ = (ũ2− + ṽ2− − b)ṽ− = b2, (2.2)

with ũ± = φ(±∞), ṽ± = ψ(±∞).
Since the system (1.1) has a non-strictly hyperbolic point (ũ, ṽ) = 0, there may exist shock 

waves which are more or less compressive than the classical Lax shocks. These are called the 
overcompressive or undercompressive shocks, that have distinct behaviors. When the shock is 
classical, there are three characteristics impinging on the shock and one leaving the shock. The 
shock is called overcompressive if more than three characteristics are impinging on the shock 
i.e. (1.4), and undercompressive if less than three characteristics are impinging on the shock. 
Here we focus attention on the case of overcompressive shocks. We quote a lemma in [3] which 
characterizes the overcompressive shock waves.

Lemma 2.1.

(i) ũ±, ṽ± satisfy the inequality (1.4) with b1 and b2 from (2.2) if and only if (ũ−, ṽ−) 
= (0, 0)

and (ũ+, ṽ+) = α(ũ−, ṽ−), α ∈ (− 1
2 , 0).

(ii) In this case, there is a 1-parameter family of viscous profiles that satisfy (2.1) and (2.2).

2.2. Dirichlet–Neumann map

We list the procedure of constructing the Dirichlet–Neumann map we will need in the follow-
ing sections, please refer to [12] for more details.

Definition 2.2. For a function y(t) defined for t ≥ 0, its Laplace transform and inverse Laplace 
transform are defined as follows:

Y(s) = L[y](s) ≡
∞∫

0

e−st y(t)dt, for s ∈ {z ∈ C|Re(s) ≥ 0};

y(t) = L
−1[Y ](t) ≡ 1

2πi
lim

T →∞

γ+iT∫
γ−iT

estY (s)ds,

Re(s) = γ, s.t. γ is greater than the real part of all singularities of Y(s).

Consider the following half space problem:

⎧⎪⎨
⎪⎩

Vt + AVx = Vxx, for x > 0, t > 0,

V (0, t) = Vb(0, t),

V (x,0) = V0(x),

(2.3)

A is a constant. A functional property on given boundary datum Vb is imposed for the consistency 
with zero initial datum case and for an application condition for the Bromwich integral:

Vb ∈ {g|L[g](s) exists for Re(s) > 0, g[n](0) = 0 for n ∈ N∪ {0}}.
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For convenience, we define Ls as the Laplace transform with respect to time variable t , Lξ as 
the Laplace transform with respect to space variable x, L−1 as the inverse Laplace transform.

Case 1: V0(x) = 0.
Applying the Laplace–Laplace transform to the equation of V in (2.3), one has:

(s + Aξ − ξ2)J[V ] = (A − ξ)Ls[Vb](0, s) − ∂xLs[V ](0, s),

J[V ] ≡ Lξ [Ls[V ]].
By purely algebraic manipulations one obtains the solution in terms of variables ξ , s, Ls[Vb]

and ∂xLs[V ]:

J[V ] = −∂xLs[V ](0, s) + 1
2Ls[Vb](0, s)(A − √

A2 + 4s)√
A2 + 4s(ξ − 1

2 (A + √
A2 + 4s))

+ −∂xLs[V ](0, s) + 1
2Ls[Vb](0, s)(A + √

A2 + 4s)√
A2 + 4s(ξ − 1

2 (A − √
A2 + 4s))

. (2.4)

Note that the characteristic polynomial s + Aξ − ξ2 has only one positive root ξ = 1
2 (A +√

A2 + 4s) for s > 0, the boundedness of the solution V requires that |V | < ∞ as x → ∞. 
This results in:

−∂xLs[V ](0, s) + 1
2Ls[Vb](0, s)(A − √

A2 + 4s)√
A2 + 4s

= 0,

which gives the Dirichlet–Neumann map:

∂xLs[V ](0, s) = − 2s

A + √
A2 + 4s

Ls[Vb](0, s) ≡ DLs[Vb](0, s). (2.5)

Case 2: V0(x) 
= 0.
One needs to shift the initial datum to the boundary by introducing:{

V̄ = V − I (x, t),

I (x, t) = ∫ ∞
0 GA(x − y, t)V0(y)dy.

(2.6)

GA is the fundamental solution for{
GA

t + AGA
x =GA

xx, for x ∈ R, t > 0,

GA(x,0) = δ(x).
(2.7)

Therefore, V̄ has the initial value and satisfies:⎧⎪⎨
⎪⎩

V̄t + AV̄x = V̄xx, for x > 0, t > 0,

V̄ (0, t) = Vb(0, t) − I (0, t),

V̄ (x,0) = 0,

(2.8)

which is the Case 1.
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3. Pointwise estimate of solution for the linearized rotationally invariant system

Linearizing system (1.1) around the given profile � = (φ, 0) gives the decoupled system:

⎧⎪⎨
⎪⎩

ut + ((3φ2 − b)u)x̄ = ux̄x̄ ,

vt + ((φ2 − b)v)x̄ = vx̄x̄ ,

u0(x̄), v0(x̄) = O(1)εe−|x̄|/C,

(3.1)

here we have changed the coordinate system to make the presentation of this problem convenient:

{
x̄ = x − bt,

t = t.

Set f1(φ) ≡ 3φ2 − b, f2(φ) ≡ φ2 − b. Without loss of generality, we assume the end states 
(ũ−, ũ+) = (1, α) because of Lemma 2.1.

3.1. Extract the non-decaying structure

Before extracting the non-decaying structure, we lay down a standard procedure to catch the 
non-decaying structure and give the pointwise estimates.

Approximate the over-compressive shock profile with a discontinuous function, which takes 
the form:

H(x̄, t) =
{

φ(−∞) = 1 x̄ < 0,

φ(∞) = α x̄ > 0.

Consider the approximate linearized equations:

⎧⎪⎨
⎪⎩

ūt + (f1(H)ū)x̄ = ūx̄x̄ ,

v̄t + (f2(H)v̄)x̄ = v̄x̄x̄ ,

ū0(x̄), v̄0(x̄) = O(1)εe−|x̄|/C.

(3.2)

Due to the discontinuous property of H(x̄, t), we separate the whole space into two half-spaces:

⎧⎪⎨
⎪⎩

ūt + ((3 − b)ū)x̄ = ūx̄x̄ , for x̄ < 0, t > 0,

v̄t + ((1 − b)v̄)x̄ = v̄x̄x̄ , for x̄ < 0, t > 0,

ū0(x̄), v̄0(x̄) = O(1)εe−|x̄|/C,

(3.3)

⎧⎪⎨
⎪⎩

ūt + ((3α2 − b)ū)x̄ = ūx̄x̄ , for x̄ > 0, t > 0,

v̄t + ((α2 − b)v̄)x̄ = v̄x̄x̄ , for x̄ > 0, t > 0,

ū0(x̄), v̄0(x̄) = O(1)εe−|x̄|/C.

(3.4)

The boundary data ū(0±, t), v̄(0±, t) will be determined by C1 continuity of (ū, v̄) and two 
Dirichlet–Neumann maps.



L. Du / J. Differential Equations 261 (2016) 4055–4072 4063
We now apply the procedure given in the preliminary section to obtain the Dirichlet–Neumann 
maps in the transformed variables. For ū, the Dirichlet–Neumann maps with the zero initial 
datum in each half space are:

⎧⎨
⎩
Ls[ū]x̄ (0−, s) = 3−b+

√
(3−b)2+4s
2 Ls[ū](0−, s) ≡ D1Ls[ū](0−, s),

Ls[ū]x̄ (0+, s) = 3α2−b−
√

(3α2−b)2+4s
2 Ls[ū](0+, s) ≡ D2Ls[ū](0+, s).

(3.5)

Combining (3.5) with C1 continuity of ū, taking the initial datum ū0(x̄) into account, we 
have:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ls[ū](0−, s) = Ls[ū](0+, s),

(3 − b)Ls[ū](0−, s) −Ls[ū]x̄ (0−, s) = (3α2 − b)Ls[ū](0+, s) −Ls[ū]x̄ (0+, s),

Ls[ū]x̄ (0−, s) −Ls[I ]x̄ (0−, s) = D1(Ls[ū](0−, s) −Ls[I ](0−, s)),

Ls[ū]x̄ (0+, s) −Ls[I ]x̄ (0+, s) = D2(Ls[ū](0+, s) −Ls[I ](0+, s)),

(3.6)

where I (0−, t) and I (0+, t) are given by (2.6):

I (0−, t) =
∞∫

0

G
3−b(x̄ − y, t)ū0(y)dy|x̄=0,

I (0+, t) =
∞∫

0

G
3α2−b(x̄ − y, t)ū0(y)dy|x̄=0.

Solving (3.6), we have

(3 − 3α2 − D1 + D2)Ls[ū](0−, s)

= −D1Ls[I ](0−, s) + D2Ls[I ](0+, s) +Ls[I ]x̄ (0−, s) −Ls[I ]x̄ (0+, s)

≡ Ls[I0](s) = O(1)ε.

The operator which converts Ls[ū](0−, s) into Ls[I0](s) has the following expression:

3 − 3α2 − D1 + D2

= 3 − 3α2 − √
(3 − b)2 + 4s − √

(3α2 − b)2 + 4s

2

= 2s

(
1

3α2 − b − √
(3α2 − b)2 + 4s

− 1

3 − b + √
(3 − b)2 + 4s

)
.

Hence,

Ls[ū](0−, s) = O(1)
C1 + √

s + C1

s
Ls[I0](s),

C1 is a positive constant.
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Taking the inverse Laplace transformation, we have the following estimates:

|ū(0±, t)| =
∣∣∣∣∣∣O(1)

t∫
0

I0(τ )dτ + O(1)

t∫
0

e−C1τ

2
√

πτ
∗ (∂τ + C1)I0(τ )dτ

∣∣∣∣∣∣
≤ O(1)ε

t∫
0

e−C1τ

√
τ + 1

dτ. (3.7)

Here and in the following, instead of studying the inverse Laplace transform of type 
√

s + C, we 
consider 

√
s+C

s+C
= 1√

s+C
by the usual inversion formula of the Laplace transform:

L−1
t (

1√
s + C

) ≡ 1

2πi

i∞∫
−i∞

est 1√
s + C

ds = e−Ct

√
πt

. (3.8)

The inversion of the Laplace transform has the property that division in s corresponds to differ-
entiation in t .

Similarly, one could obtain the same estimate for v̄(0±, t). For large times, the boundary 
information obtained in (3.7) implies that there is a non-decaying component caused by initial 
data.

Moreover, if extracting the boundary information, one can get the pointwise estimate of (3.2)
with the help of Green’s function for the two half-space problem:

Lemma 3.1.

∣∣(ū(x̄, t), v̄(x̄, t)) − diag(ū(0±, t), v̄(0±, t))�̄(x̄)
∣∣ = O(1)εe−(|x̄|+t)/C,

�̄ is the stationary solution of (3.2) with �̄(±∞) = 0. One has the following estimates: |�̄(x̄)| ≤
O(1)e− |x̄|

C , |diag(ū(0±, t), v̄(0±, t))| ≤ O(1)ε
∫ t

0
e−C1τ√

τ+1
dτ .

For large times, 
∫
R

diag(ū(0±, t), v̄(0±, t))�̄(x̄)dx̄ = ∫
R
(ū0(x̄), v̄0(x̄))dx̄ due to conserva-

tion laws.
If the initial data 

∫
R
(ū0(x̄), v̄0(x̄))dx̄ = 0, one has

|(ū(x̄, t), v̄(x̄, t))| = O(1)εe−(|x̄|+t)/C.

Proof. The way of obtaining the estimates is similar to that in [1,2], we just take the equation of 
ū(x̄, t) in system (3.3) as an example and outline the main ingredients of proof here.

One shifts the initial datum to the boundary by

w(x̄, t) = ū(x̄, t) −
∞∫

0

G
3−b(x̄ − y, t)ū0(y)dy.

Denote the Laplace–Laplace transform of w(x̄, t) as J[w](ξ, s), it is the solution of
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⎧⎨
⎩

(s + (3 − b)ξ − ξ2)J[w] = (3 − b − ξ)Ls[w](0, s) − ∂xLs[w](0, s),

Ls[w](0, s) = O(1)ε(
C1+√

s+C1
s

− 1√
4s+(3−b)2

).

Then J[w](ξ, s) = O(1)ε(
C1+√

s+C1
s

− 1√
4s+(3−b)2

) 1
ξ− 1

2 ((3−b)−
√

(3−b)2+4s)
.

The explicit expression of Ls[w](x̄, s) is

Ls[w](x̄, s) = O(1)ε(
C1 + √

s + C1

s
− 1√

4s + (3 − b)2
)e

1
2 x̄((3−b)−

√
(3−b)2+4s)

= O(1)ε(
C1 + √

s + C1

s
− 1√

4s + (3 − b)2
)
√

4s + (3 − b)2

× e
1
2 x̄((3−b)−

√
(3−b)2+4s)√

4s + (3 − b)2
.

Since x̄ < 0 and

L
−1
t [

√
4s + (3 − b)2] = (4∂t + (3 − b)2δ(t)) ∗ e

−(3−b)2 t
4√

4πt
,

we have

|L−1
t [sLs[w]](x̄, t)| = O(1)ε

e− (x̄−(3−b)t)2
4t√

4πt
= O(1)εe−|x̄|/C−t/C,

C is a universal constant.
Thus

|w(x̄, t)| = O(1)εe−|x̄|/C.

This verifies the non-decaying part of Lemma 3.1. The rest of the proof is quite standard and we 
won’t repeat the analysis here.

With the above observation, we introduce a non-decaying component stacked in the shock 

region: β(t)�(x̄), |β(t)| ≤ O(1)ε
∫ t

0
e−C1τ√

τ+1
dτ , |�(x̄)| ≤ O(1)e− |x̄|

C , �(x̄) ≡ (ψ1, ψ2) is a sta-

tionary solution of (3.1) with �(±∞) = 0. Extracting it from (3.1), setting

(z1, z2) ≡ (u, v) − β(t)�,

we have ⎧⎪⎨
⎪⎩

z1t + (f1(φ)z1)x̄ = z1x̄x̄ + β ′(t)ψ1,

z2t + (f2(φ)z2)x̄ = z2x̄x̄ + β ′(t)ψ2,

zi(x̄,0) = 0, i = 1,2.

� (3.9)
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3.2. Pointwise estimate of the approximate problem

The approximate problem for (3.9) is given as follows:

⎧⎪⎨
⎪⎩

r1t + (f1(φL)r1)x̄ = r1x̄x̄ + β ′(t)ψ1,

r2t + (f2(φL)r2)x̄ = r2x̄x̄ + β ′(t)ψ2,

ri(x̄,0) = 0, i = 1,2,

(3.10)

φL is defined by (1.9).
Following the framework, we split the whole space domain into three parts. The solvability of 

problem in the left and right far fields gives two Dirichlet–Neumann maps:

Ls[r1]x(−L−, s) = D1Ls[r1](−L−, s) + I1(−L−, s), (3.11)

Ls[r1]x(L+, s) = D2Ls[r1](L+, s) + I2(L+, s), (3.12)

where

I1(−L−, s) = O(1)ε

(s + C)(
−(3−b)+

√
(3−b)2+4s

2 + C)

,

I2(L+, s) = O(1)ε

(s + C)(
3α2−b+

√
(3α2−b)2+4s
2 + C)

,

D1 and D2 are defined by (3.5).
Applying the Laplace transformation to the equation of r1 with respect to time variable t , we 

multiply the transformed equation with G defined by (1.12), integrate in the domain [−L, L] by 
parts, with the help of C1 continuity of r1 at x̄ = −L, we get

L∫
−L

G(x̄, s)Ls[S](x̄, s)dx̄ + O(1)ε

(s + C)(
−(3−b)+

√
(3−b)2+4s

2 + C)

= (Gf1(φL)Ls[r1] − GLs[r1]x̄ + Gx̄Ls[r1])|L−, (3.13)

which is the second relationship for Dirichlet and Neumann data at x̄ = L. Here S(x̄, t) ≡
β ′(t)ψ1.

By (3.12), (3.13) and the C1 continuity of r1 at x̄ = L, one could solve:

Ls[r1](L−, s) =

∫ L
−L GLs [S]dx̄

G(L−,s)
+ O(1)ε

(s+C)(
−(3−b)+

√
(3−b)2+4s

2 +C)G(L−,s)

f1(φL(∞)) + D2 + Gx̄(L−,s)
G(L−,s)

+
O(1)ε

(s+C)(
3α2−b+

√
(3α2−b)2+4s

2 +C)

f1(φL(∞)) + D2 + Gx̄(L−,s)

G(L−,s)
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=
∫ L
−L GLs [S]dx̄

G(L−,s)

3(3α2−b)−
√

(3α2−b)2+4s
2 + Gx̄(L−,s)

G(L−,s)

+
O(1)ε

(s+C)(
−(3−b)+

√
(3−b)2+4s

2 +C)G(L−,s)

3(3α2−b)−
√

(3α2−b)2+4s
2 + Gx̄(L−,s)

G(L−,s)

+
O(1)ε

(s+C)(
3α2−b+

√
(3α2−b)2+4s

2 +C)

3(3α2−b)−
√

(3α2−b)2+4s
2 + Gx̄(L−,s)

G(L−,s)

. (3.14)

To invert Ls[r1](L−, s), we first give some observation on the transition function G(x̄, s)
which satisfies:

⎧⎪⎨
⎪⎩

sG − f1(φL)Gx̄ − Gx̄x̄ = 0,

G(−L, s) = 1,

Gx̄(−L, s) = −D1 − f1(φL)(−∞) = − 3(3−b)+
√

(3−b)2+4s
2 < 0.

(3.15)

First, ∀s, G(L−, s) 
= 0. Set P(x̄, s) = −Gx̄(x̄,s)
G(x̄,s)

, then P satisfies the following ODE problem:

⎧⎨
⎩

Px̄ = P 2 − f1(φL)P − s,

P (−L, s) = 3(3−b)+
√

(3−b)2+4s
2 .

By the monotone property, we have

P(L, s) >
f1(φL(+∞)) −

√
f1

2(φL(+∞)) + 4s

2
= (3α2 − b) − √

(3α2 − b)2 + 4s

2
.

Therefore, ∀s,

3(3α2 − b) − √
(3α2 − b)2 + 4s

2
+ Gx̄(L−, s)

G(L−, s)
< 3α2 − b < 0.

We choose a suitable positive constant C3, and conclude that Ls[r1](L−, s) is an analytic func-
tion of variable s for Re[s] > −C3. Note that Ls[r1](L−, s) decays to zero when s → ±i∞. 
Therefore, by the complex analysis we have

|r1(L−, t)| = O(1)εe−t/C3

∣∣∣∣∣∣
∫
R

eiηt
Ls[r1](L−, iη − C3)dη

∣∣∣∣∣∣ ≤ O(1)εe−t/C4,

for some constant C4. One could use the similar approach to estimate the term r1(−L+, t).
Once all the boundary data are clear, with the help of spectrum gap [8], we solve the problem 

in finite domain and get the following exponential decaying estimate:

sup |r1(x̄, t)| = O(1)εe−t/C. (3.16)

x̄∈[−L,L]
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The problem restricted to the left or right far field is just a constant coefficient problem in half 
space. Consider the problem in the left far field:

⎧⎪⎨
⎪⎩

r1t + (f1(φL(−∞))r1)x̄ = r1x̄x̄ + S(x̄, t), x̄ < −L, t > 0,

r1(x̄,0) = z1(x̄,0),

r1(−L, t) = O(1)εe−t/C4 .

(3.17)

With the Green’s identity, we have the solution for (3.17) when x̄ < −L, t > 0:

r1(x̄, t) =
−L∫

−∞
G

f1(φL(−∞))(x̄ − y, t)r1(y,0)dy

+
t∫

0

G
f1(φL(−∞))(x̄, t − τ)(r1(−L,τ) − r1x̄ (−L,τ))dτ

+
t∫

0

G
f1(φL(−∞))
x̄ (x̄, t − τ)r1(−L,τ)dτ

+
t∫

0

−L∫
−∞

G
f1(φL(−∞))(x̄ − y, t − τ)S(y, τ )dydτ. (3.18)

The transformation of Neumann datum r1x̄ (−L, τ) is given by the Dirichlet–Neumann map 
(3.11). Note that

⎧⎪⎨
⎪⎩ L

−1
t [D1] = (3−b)δ(t)+(3−b)2 e−(3−b)2/4t√

πt
+4 e−(3−b)2/4t√

πt
∗∂t

2 ,

L
−1
t [I1(−L−, s)] = O(1)εe−Ct ∗ e−(3−b)2t/4,

one has:

|r1(x̄, t)| =
∣∣∣∣∣∣O(1)ε

t∫
0

Ḡ(x̄, t − τ, f1(φL(−∞)))(L−1
τ [D1] ∗ e−τ/C + e−τ/C)dτ

+ O(1)ε

t∫
0

Ḡx̄ (x̄, t − τ, f1(φL(−∞)))e−τ/Cdτ

+ O(1)ε

t∫
0

−L∫
−∞

Ḡ(x̄ − y, t − τ, f1(φL(−∞)))e(−|y|−τ)/Cdydτ

∣∣∣∣∣∣
= O(1)εe(−|x̄|−t)/C, x̄ < −L, t > 0. (3.19)
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One could do the similar computations in the right far field. Combining (3.16) with (3.19), we 
get the estimate for the whole space:

|r1(x̄, t)| = O(1)εe−(|x̄|+t)/C, for x̄ ∈ R, t > 0, (3.20)

C is a universal positive constant. Similar approach can be used to estimate r2.

3.3. Error term and iterative scheme

The error function (e1, e2) = (z1 − r1, z2 − r2) of the approximate problem (3.10) to (3.9)
satisfies the following initial value problem:

⎧⎪⎨
⎪⎩

e1t + (f1(φ)e1)x̄ = e1x̄x̄ + ((f1(φL) − f1(φ))r1)x̄ ,

e2t + (f2(φ)e2)x̄ = e2x̄x̄ + ((f2(φL) − f2(φ))r2)x̄ ,

ei(x̄,0) = 0, i = 1,2,

(3.21)

here

{ |ri | = O(1)εe−(|x̄|+t)/C, i = 1,2,

|fi(φL) − fi(φ)| = O(1)ε, i = 1,2.

Now we introduce an iterative scheme to construct the solution of (3.9):

⎧⎪⎨
⎪⎩

r0
i = ri ,

e0
i = zi,

ek
i ≡ ek−1

i − rk−1
i , k ≥ 1,

(3.22)

⎧⎪⎪⎨
⎪⎪⎩

ek
1 t

+ (f1(φ)ek
1)x̄ = ek

1 x̄x̄
+ ((f1(φL) − f1(φ))rk−1

1 )x̄ ,

ek
2 t

+ (f2(φ)ek
2)x̄ = ek

2 x̄x̄
+ ((f2(φL) − f2(φ))rk−1

2 )x̄ ,

ek
i (x̄,0) = 0, i = 1,2,

(3.23)

⎧⎪⎪⎨
⎪⎪⎩

rk
1 t

+ (f1(φL)rk
1 )x̄ = rk

1 x̄x̄
+ ((f1(φL) − f1(φ))rk−1

1 )x̄ ,

rk
2 t

+ (f2(φL)rk
2 )x̄ = rk

2 x̄x̄
+ ((f2(φL) − f2(φ))rk−1

2 )x̄ ,

rk
i (x̄,0) = 0, i = 1,2.

(3.24)

For each rk
i , we have the following estimate:

|rk
i (x̄, t)| = O(1)εk+1e−(|x̄|+t)/C, for x̄ ∈ R, t > 0. (3.25)

The solution of (3.9) can be written formally in terms of the iterative scheme:

zi =
∞∑

rk
i .
k=0
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From (3.25), the series is convergent, and

|zi(x̄, t)| = O(1)εe−(|x̄|+t)/C, for x̄ ∈ R, t > 0.

To summarize, we have the following theorem:

Theorem 3.2. The solution of (3.1) defines a semi-group Gt
� as follows:

G
t
�[u0, v0](x̄) ≡ (u(x̄, t), v(x̄, t))

which satisfies:

|(u(x̄, t), v(x̄, t)) − β(t)�(x̄)| = O(1)εe−(|x̄|+t)/C,

where: |�(x̄)| = O(1)e− |x̄|
C , |β(t)| ≤ O(1)ε

∫ t

0
e−C1τ√

τ+1
dτ , C is a universal constant. For large 

times,

∫
R

β(t)�(x̄)dx̄ =
∫
R

(ū0(x̄), v̄0(x̄))dx̄

due to the conservation laws.
If the initial data satisfy: 

∫
R
(u(x̄, 0), v(x̄, 0))dx̄ = 0, one has

|u(x̄, t), v(x̄, t)| = O(1)εe−(|x̄|+t)/C.

4. Nonlinear stability of over-compressive shock waves (proof of Main Theorem)

The estimate obtained in Theorem 3.2 tells us that there is a stationary structure O(1)εe−|x̄|/C

determined by the initial data. To get the nonlinear stability, instead of extracting the over-
compressive shock profile, the shock profile with a proper shift and a proper shape changed 
is the real final state (extracting the stationary part). Consider the perturbation of new profile

�∗ ≡ (φ∗(x̄ − x0),ψ
∗(x̄ − x0)),

which satisfies:

{ ∫
R
(u0, v0)(x)dx = ∫

R
((φ∗,ψ∗) − (φ,ψ))dx,

|�∗ − �| = O(1)εe−|x̄|/C.
(4.1)

Note that the phase shift x0 contributes to the integral only for the first component, because the 
end states (ũ±, ṽ±) have zero second component. For simplicity, assume that x0 = 0.
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The perturbation 

(
u∗(x̄, t)

v∗(x̄, t)

)
≡

(
ũ(x, t)

ṽ(x, t)

)
− �∗ satisfies:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
u∗(x̄, t)

v∗(x̄, t)

)
t

+
(

(A(�∗(x̄)) − bI)

(
u∗(x̄, t)

v∗(x̄, t)

))
x̄

=
(

u∗(x̄, t)

v∗(x̄, t)

)
x̄x̄

− Q

(
�∗,

(
u∗(x̄, t)

v∗(x̄, t)

))
x̄

,

∣∣∣∣∣
(

u∗(x̄,0)

v∗(x̄,0)

)∣∣∣∣∣ = O(1)εe−|x̄|/C,

∫
R

(
u∗(x̄,0)

v∗(x̄,0)

)
dx̄ = 0,

(4.2)

where A(�∗) ≡ |�∗|2I + 2�∗�∗T , Q is the quadratic remainder which is easily checked to 
obey the estimate [3]:

|Q(�∗,Z)| ≤ 3(|�∗| + |Z|)|Z|2.

Due to the second estimate in (4.1), we rewrite the first equation of system (4.2) as follows:

{
u∗

t + (f1(φ)u∗)x̄ = u∗
x̄x̄ + O(1)ε(e−|x̄|/C(u∗ + v∗))x̄ + Q1(x̄, t),

v∗
t + (f2(φ)v∗)x̄ = v∗

x̄x̄ + O(1)ε(e−|x̄|/C(u∗ + v∗))x̄ + Q2(x̄, t),
(4.3)

Q1 and Q2 are higher order remainders including terms O(1)ε2(e−|x̄|/C(u∗ + v∗))x̄ , (u∗ + v∗)2.
Now make an ansatz on the solution:

∣∣u∗(x̄, t), v∗(x̄, t)
∣∣ ≤ O(1)εe−(|x̄|+t)/C, (4.4)

to deal with the nonlinear term.
To verify the ansatz, we only need to show that under the ansatz, the following holds:

∣∣∣∣∣∣
∫
R

G�(x̄ − y, t)[u∗(y,0), v∗(y,0)]dy

+ O(1)

t∫
0

∫
R

G�(x̄ − y, t − s)

[ε(e−|y|/C(u∗ + v∗))y + Q1(y, s), ε(e−|y|/C(u∗ + v∗))y + Q2(y, s)]dyds

∣∣∣
≤ O(1)εe−(|x̄|+t)/C, for x̄ ∈ R, t > 0. (4.5)

By Theorem 3.2 Gt [u0, v0](x̄) = (u(x̄, t), v(x̄, t)),
φ
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|Gt
φ[u0, v0](x̄)| ≤ O(1)εe−(|x̄|+t)/C.

From the ansatz (4.4), we have:

|O(1)ε(e−|x̄|/C(u∗ + v∗))x | ≤ O(1)ε2e−(|x̄|+t)/D,

and

|Qi(x̄, t)| ≤ O(1)ε2e−(|x̄|+t)/D.

Therefore (4.5) is true and we prove the Main Theorem 1.1.
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