期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:248
Global well-posedness for a fifth-order shallow water equation in Sobolev spaces
Article
Yang, Xingyu1  Li, Yongsheng1 
[1] S China Univ Technol, Dept Math, Guangzhou 510640, Guangdong, Peoples R China
关键词: Shallow water equation;    Global well-posedness;    1-method;    Almost conservation law;    Bilinear estimates;   
DOI  :  10.1016/j.jde.2010.01.004
来源: Elsevier
PDF
【 摘 要 】

The Cauchy problem of a fifth-order shallow water equation partial derivative(t)u - partial derivative(2)(x)partial derivative(t)u + partial derivative(3)(x)u + 3u partial derivative(x)u - 2 partial derivative(x)u partial derivative(2)(x)u - u partial derivative(3)(x)u - partial derivative(5)(x)u = 0 is shown to be globally well-posed in Sobolev spaces H-s(R) for s > (6 root 10 - 17)/4. The proof relies on the 1-method developed by Colliander, Keel, Staffilani. Takaoka and Tao. For this equation lacks scaling invariance, we reconsider the local result and pay special attention to the relationship between the lifespan of the local solution and the initial data. We prove the almost conservation law, and combine it with the local result to obtain the global well-posedness. (C) 2010 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2010_01_004.pdf 214KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次