期刊论文详细信息
| JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:458 |
| Global well-posedness for a L2-critical nonlinear higher-order Schrodinger equation | |
| Article | |
| Van Duong Dinh1  | |
| [1] Univ Paul Sabatier, Inst Math Toulouse, Toulouse, France | |
| 关键词: Cubic higher-order Schrodinger equation; Global well-posedness; Almost conservation law; | |
| DOI : 10.1016/j.jmaa.2017.09.004 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
We prove the global well-posedness for a L-2-critical defocusing cubic higher-order Schrodinger equation, namely i partial derivative(t)u+Lambda(k)u= -vertical bar u vertical bar(2)u, where Lambda = root-Delta and k >= 3, k is an element of Z in R-k with initial data u(0) is an element of H-gamma, gamma > gamma(k) := k(4k-1)/14k-3. (C) 2017 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jmaa_2017_09_004.pdf | 443KB |
PDF