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We prove the global well-posedness for a L2-critical defocusing cubic higher-order 
Schrödinger equation, namely

i∂tu + Λku = −|u|2u,

where Λ =
√
−Δ and k ≥ 3, k ∈ Z in Rk with initial data u0 ∈ Hγ , γ > γ(k) :=

k(4k−1)
14k−3 .

© 2017 Elsevier Inc. All rights reserved.

1. Introduction and main results

Let k ≥ 2, k ∈ Z. We consider the Cauchy problem for the defocusing cubic nonlinear higher-order 
Schrödinger equation posed on Rk, namely{

i∂tu(t, x) + Λku(t, x) = −|u(t, x)|2u(t, x), t ≥ 0, x ∈ Rk,

u(0, x) = u0(x) ∈ Hγ(Rk),
(NLSk)

where Λ =
√
−Δ is the Fourier multiplier by |ξ|. When k = 2, (NLSk) corresponds to the well-known 

Schrödinger equation (see e.g. [11], [19], [18], [20], [21], [13], [16], [15], [12], [1], [2] and references therein). 
When k = 4, it is the fourth-order Schrödinger equation take into consideration the role of small fourth-order 
dispersion in the propagation of intense laser beams in a bulk medium with Kerr nonlinearity (see e.g. [7], 
[8], [3], [4]).

It is worth noticing that the (NLSk) is L2-critical in the sense that if u is a solution to (NLSk) on (−T, T )
with initial data u0, then

uλ(t, x) = λ−k/2u(λ−kt, λ−1x), (1.1)
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is also a solution of (NLSk) on (−λkT, λkT ) with initial data uλ(0) and

‖uλ(0)‖L2(Rk) = ‖u0‖L2(Rk).

It is known (see e.g. [18], [22], [23]) that (NLSk) is locally well-posed in Hγ(Rk) when γ > 0. Moreover, 
these local solutions enjoy mass conservation, i.e.

‖u(t)‖L2(Rk) = ‖u0‖L2(Rk), (1.2)

and Hk/2 solutions have the conserved energy, i.e.

E(u(t)) :=
∫
Rk

1
2 |Λ

k/2u(t, x)|2 + 1
4 |u(t, x)|4dx = E(u0). (1.3)

The conservations of mass and energy combine with the persistence of regularity (see e.g. [23]) immediately 
yield the global well-posedness for (NLSk) with initial data in Hγ(Rk) when γ ≥ k/2. Note also (see [22]) 
that one has the local well-posedness for (NLSk) when initial data u0 ∈ L2(Rk) but the time of existence 
depends not only on the size but also on the profile of the initial data. In addition, if ‖u0‖L2(Rk) is small 
enough, then (NLSk) is global well-posed and scattering in L2(Rk). It is conjectured that (NLSk) is in fact 
globally well-posed for initial data in Hγ(Rk) with γ ≥ 0. This paper concerns with the global well-posedness 
of (NLSk) in Hγ(Rk) when 0 < γ < k/2. Let us recall known results for the defocusing cubic Schrödinger 
equation in R2, i.e. (NLS2). The first attempt to this problem due to Bourgain in [11] where he used a 
“Fourier truncation” approach to prove the global existence for γ > 3/5. It was then improved for γ > 4/7
by I-team in [13]. The proof is based on the almost conservation of a modified energy functional. The idea 
is to replace the conserved energy E(u), which is not available when γ < 1, by an “almost conserved” 
quantity E(INu) with N � 1 where IN is a smoothing operator which behaves like the identity for low 
frequencies |ξ| ≤ N and like a fractional integral operator of order 1 − γ for high frequencies |ξ| ≥ 2N . 
Since INu is not a solution to (NLS2), we may expect an energy increment. The key idea is to show that 
on the time interval of local existence, the increment of the modified energy E(INu) decays with respect to 
a large parameter N . This allows to control E(INu) on time interval where the local solution exists, and 
we can iterate this estimate to obtain a global in time control of the solution by means of the bootstrap 
argument. Fang–Grillakis then upgraded this result to γ ≥ 1/2 in [24]. Later, Colliander–Grillakis–Tzirakis 
improved for γ > 2/5 in [15] using an almost interaction Morawetz inequality. Subsequent paper [12] has 
decreased the necessary regularity to γ > 1/3. Afterwards, Dodson established in [1] the global existence 
for (NLS2) when γ > 1/4. The proof combines the almost conservation law and an improved interaction 
Morawetz estimate. Recently, Dodson in [2] proved the global well-posedness and scattering for (NLS2) 
for initial data u0 ∈ L2(R2) using the bilinear estimate and a frequency localized interaction Morawetz 
estimate. We next recall some known results about the global well-posedness below energy space for the 
fourth-order Schrödinger equation. In [6], the author considered the more general fourth-order Schrödinger 
equation, namely

i∂tu + λΔu + μΔ2u + ν|u|2mu = 0,

and established the global well-posedness in Hγ(Rn) for γ > 1 + mn−9+
√

(4m−mn+7)2+16
4m under the assump-

tion 4 < mn < 4m + 2 and of course some conditions on λ, μ and ν. For the mass-critical fourth-order 
Schrödinger equation in high dimensions n ≥ 5, Pausader–Shao proved in [5] that the L2-solution is global 
and scattering under some conditions. Recently, Miao–Wu–Zhang in [9] showed the global existence and scat-
tering below energy space for the defocusing cubic fourth-order Schrödinger equation in Rn with n = 5, 6, 7. 
To our knowledge, there is no result concerning the global existence (possibly scattering) for (NLS4).
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The purpose of this paper is to prove the global existence of (NLSk) with k ≥ 3, k ∈ Z below the energy 
space Hk/2(Rk).

Theorem 1.1. Let k ≥ 3, k ∈ Z. The initial value problem (NLSk) is globally well-posed in Hγ(Rk) for any 
k/2 > γ > γ(k) := k(4k−1)

14k−3 . Moreover, the solution satisfies

‖u(T )‖Hγ(Rk) ≤ C(1 + T )
(4k−1)(k−2γ)

2((14k−3)γ−k(4k−1))+,

for |T | → ∞, where the constant C depends only on ‖u0‖Hγ(Rk).

The proof of this theorem is based on the I-method similar to [13] (see also [6]). We shall consider 
a modified I-operator and show a suitable “almost conservation law” for the higher-order Schrödinger 
equation. The global well-posedness then follows by a usual scheme as in [13].

This paper is organized as follows. In Section 2, we recall some linear and bilinear estimates for the 
higher-order Schrödinger equation, and also a modified I-operator together with its basic properties. We 
will show in Section 3 an almost conservation law and a modified local well-posed result. The proof of 
Theorem 1.1 is proved in Section 4. Throughout this paper, we shall use A � B to denote an estimate of 
the form A ≤ CB for some absolute constant C. The notation A ∼ B means that A � B and B � A. 
We write A � B to denote A ≤ cB for some small constant c > 0. We also use the Japanese bracket 
〈a〉 :=

√
1 + |a|2 ∼ 1 + |a| and a± := a ± ε with some universal constant 0 < ε � 1.

2. Preliminaries

2.1. Littlewood–Paley decomposition

Let ϕ be a smooth, real-valued, radial function in Rk such that ϕ(ξ) = 1 for |ξ| ≤ 1 and ϕ(ξ) = 0 for 
|ξ| ≥ 2. Let M = 2k, k ∈ Z. We denote the Littlewood–Paley operators by

P̂≤Mf(ξ) := ϕ(M−1ξ)f̂(ξ),

P̂>Mf(ξ) := (1 − ϕ(M−1ξ))f̂(ξ),

P̂Mf(ξ) := (ϕ(M−1ξ) − ϕ(2M−1ξ))f̂(ξ),

where ̂· is the spatial Fourier transform. We similarly define

P<M := P≤M − PM , P≥M := P>M + PM ,

and for M1 ≤ M2,

PM1<·≤M2 := P≤M2 − P≤M1 =
∑

M1<M≤M2

PM .

We have the following so called Bernstein’s inequalities (see e.g. [10, Chapter 2] or [21, Appendix]).

Lemma 2.1. Let γ ≥ 0 and 1 ≤ p ≤ q ≤ ∞.

‖P≥Mf‖Lp
x

� M−γ‖ΛγP≥Mf‖Lp
x
,

‖P≤MΛγf‖Lp
x

� Mγ‖P≤Mf‖Lp
x
,
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‖PMΛ±γf‖Lp
x
∼ M±γ‖PMf‖Lp

x
,

‖P≤Mf‖Lq
x

� Mk/p−k/q‖P≤Mf‖Lp
x
,

‖PMf‖Lq
x

� Mk/p−k/q‖PMf‖Lp
x
.

2.2. Norms and Strichartz estimates

Let γ, b ∈ R. The Bourgain space Xγ,b
τ=|ξ|k is the closure of space-time Schwartz space St,x under the 

norm

‖u‖Xγ,b

τ=|ξ|k
:= ‖ 〈ξ〉γ

〈
τ − |ξ|k

〉b
ũ‖L2

τL
2
ξ
,

where ̃· is the space-time Fourier transform, i.e.

ũ(τ, ξ) :=
∫∫

e−i(tτ+xξ)u(t, x)dtdx.

We shall use Xγ,b instead of Xγ,b
τ=|ξ|k when there is no confusion. We recall a following special property of 

Xγ,b space (see e.g. [21, Lemma 2.9]).

Lemma 2.2. Let γ, γ1, γ2 ∈ R and Y be a Banach space of functions on R ×Rk. If

‖eitτeitΛk

f‖Y � ‖f‖Hγ
x
,

for all f ∈ Hγ
x and all τ ∈ R, then

‖u‖Y � ‖u‖Xγ,1/2+ ,

for all u ∈ St,x. Moreover, if

‖[eitτeitΛk

f1][eitζeitΛ
k

f2]‖Y � ‖f1‖Hγ1‖f2‖Hγ2
x
,

for all f1 ∈ Hγ1
x , f2 ∈ Hγ2

x and all τ, ζ ∈ R, then

‖u1u2‖Y � ‖u1‖Xγ1,1/2+‖u2‖Xγ2,1/2+ ,

for all u1, u2 ∈ St,x.

Throughout this paper, a pair (p, q) is called admissible in Rk if

(p, q) ∈ [2,∞]2, (q, p) �= (2,∞), 1
p

+ 1
q

= 1
2 . (2.4)

We recall the following Strichartz estimate (see e.g. [22], [3]).

Proposition 2.3. Let k ≥ 2, k ∈ Z. Suppose that u is a solution to

i∂tu(t, x) + Λku(t, x) = F (t, x), u(0, x) = u0(x), (t, x) ∈ R× Rk.

Then for all (p, q) and (a, b) admissible pairs,
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‖u‖Lp
tL

q
x

� ‖u0‖L2
x

+ ‖F‖La′
t Lb′

x
.

Here (a, a′) and (b, b′) are Hölder exponents.

A direct consequence of Lemma 2.2 and Proposition 2.3 is the following linear estimate in Xγ,b space.

Corollary 2.4. Let (p, q) be an admissible pair. Then

‖u‖Lp
tL

q
x

� ‖u‖X0,1/2+ , (2.5)

for all u ∈ St,x.

We also have the following bilinear estimate in Rk.

Proposition 2.5. Let k ≥ 2, k ∈ Z and M1, M2 ∈ 2Z be such that M1 ≤ M2. Then

‖[eitΛk

PM1u0][eitΛ
k

PM2v0]‖L2
tL

2
x

� (M1/M2)(k−1)/2‖u0‖L2
x
‖v0‖L2

x
.

Proof. We refer the reader to [11] for the standard case k = 2. The proof for k > 2 is treated similarly. For 
M1 ∼ M2, the result follows easily from the Strichartz estimate,

‖[eitΛk

PM1u0][eitΛ
k

PM2v0]‖L2
tL

2
x
≤ ‖eitΛk

PM1u0‖L4
tL

4
x
‖eitΛk

PM2v0‖L4
tL

4
x

� ‖u0‖L2
x
‖v0‖L2

x
.

Note that (4, 4) is an admissible pair. Let us consider the case M1 � M2. By duality, it suffices to prove

∣∣∣ ∫∫
Rk×Rk

G(−|ξ|k − |η|k, ξ + η)P̂M1u0(ξ)P̂M2v0(η)dξdη
∣∣∣

� (M1/M2)(k−1)/2‖G‖L2
τL

2
ξ
‖û0‖L2

ξ
‖v̂0‖L2

ξ
. (2.6)

By renaming the components, we can assume that |ξ| ∼ |ξ1| ∼ M1 and |η| ∼ |η1| ∼ M2, where ξ = (ξ1, ξ), 
η = (η1, η) with ξ, η ∈ Rk−1. We make a change of variables τ = −|ξ|k−|η|k, ϑ = ξ+η and dτdϑ = Jdξ1dη. 
An easy computation shows that J = |k(|η|k−2η1 − |ξ|k−2ξ1)| ∼ |η|k−1 ∼ Mk−1

2 . The Cauchy–Schwarz 
inequality with the fact that |ξ| � M then yields

LHS(2.6) =
∣∣∣ ∫∫∫
R×Rk×Rk−1

G(τ, ϑ)P̂M1u0(ξ)P̂M2v0(η)J
−1dτdϑdξ

∣∣∣
≤ ‖G‖L2

τL
2
ξ

∫
Rk−1

(∫∫
R×Rk

|P̂M1u0(ξ)|2|P̂M2v0(η)|2J−2dτdϑ
)1/2

dξ

≤ ‖G‖L2
τL

2
ξ
M

(k−1)/2
1

( ∫∫∫
R×Rk×Rk−1

|P̂M1u0(ξ)|2|P̂M2v0(η)|2J−2dτdϑdξ
)1/2

≤ ‖G‖L2
τL

2
ξ
M

(k−1)/2
1

( ∫∫∫
R×Rk×Rk−1

|P̂M1u0(ξ)|2|P̂M2v0(η)|2J−1dξdη
)1/2

� ‖G‖L2
τL

2
ξ
(M1/M2)(k−1)/2‖P̂M1u0‖L2

ξ
‖P̂M2v0‖L2

ξ
.

This proves (2.6), and the proof is complete. �
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The following result is another application of Lemma 2.2 and Proposition 2.5.

Corollary 2.6. Let k ≥ 2, k ∈ Z and u1, u2 ∈ X0,1/2+ be supported on spatial frequencies |ξ| ∼ M1, M2
respectively. Then for M1 ≤ M2,

‖u1u2‖L2
tL

2
x

� (M1/M2)(k−1)/2‖u1‖X0,1/2+‖u2‖X0,1/2+ . (2.7)

A similar estimate holds for u1u2 or u1u2.

2.3. I-operator

For 0 < γ < k/2 and N � 1, we define the Fourier multiplier IN by

ÎNf(ξ) := mN (ξ)f̂(ξ), (2.8)

where m is a smooth, radially symmetric, non-increasing function such that

mN (ξ) :=
{

1 if |ξ| ≤ N,

(N−1|ξ|)γ−2 if |ξ| ≥ 2N.
(2.9)

For simplicity, we shall drop the N from the notation and write I and m instead of IN and mN . The 
operator I is the identity on low frequencies |ξ| ≤ N and behaves like a fractional integral operator of order 
k/2 − γ on high frequencies |ξ| ≥ 2N . We recall some basic properties of the I-operator in the following 
lemma.

Lemma 2.7. Let q ∈ (1, ∞) and γ ∈ (0, k/2). Then

‖If‖Lq
x

� ‖f‖Lq
x
, (2.10)

‖f‖Hγ
x

� ‖If‖
H

k/2
x

� Nk/2−γ‖f‖Hγ
x
. (2.11)

Proof. The estimate (2.10) follows from the fact that m satisfies the Hörmander multiplier condition. For
(2.11), we proceed as follows.

‖f‖2
Hγ

x
�

∫
|ξ|≤N

〈ξ〉2γ |Îf(ξ)|2dξ +
∫

|ξ|≥2N

〈ξ〉2γ (N−1|ξ|)2(k/2−γ)|Îf(ξ)|2dξ

�
∫

|ξ|≤N

〈ξ〉k |Îf(ξ)|2dξ +
∫

|ξ|≥2N

〈ξ〉k |Îf(ξ)|2dξ � ‖If‖2
H

k/2
x

.

This gives the first estimate in (2.11). Similarly,

‖If‖2
H

k/2
x

�
∫

|ξ|≤N

〈ξ〉k |f̂(ξ)|2dξ +
∫

|ξ|≥2N

〈ξ〉k (N−1|ξ|)2(γ−k/2)|f̂(ξ)|2dξ

�
∫

|ξ|≤N

〈ξ〉2(k/2−γ) 〈ξ〉2γ |f̂(ξ)|2dξ +
∫

|ξ|≥2N

N2(k/2−γ) 〈ξ〉2γ |f̂(ξ)|2dξ

� N2(k/2−γ)
( ∫
|ξ|≤N

〈ξ〉2γ |f̂(ξ)|2dξ +
∫

|ξ|≥2N

〈ξ〉2γ |f̂(ξ)|2dξ
)

� N2(k/2−γ)‖f‖2
Hγ

x
.

The proof is complete. �
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3. Almost conservation law

As mentioned in the introduction, the equation (NLSk) is locally well-posed in Hγ for any γ > 0. More-
over, the time of existence depends only on the Hγ

x -norm of the initial data. Thus, the global well-posedness 
will follows from a global L∞

t Hγ
x bound of the solution by the usual iterative argument. For Hγ solution 

with γ ≥ k/2, one can obtain easily the L∞
t Hγ

x bound of solution using the persistence of regularity and 
the conserved quantities of mass and energy. But it is not the case for Hγ solution with γ < k/2 since the 
energy is no longer conserved. However, it follows from (2.11) that the Hγ

x -norm of the solution u can be 
controlled by the Hk/2

x -norm of Iu. It leads to consider the following modified energy functional

E(Iu(t)) := 1
2‖Iu(t)‖2

Ḣ
k/2
x

+ 1
4‖Iu(t)‖4

L4
x
. (3.12)

Since Iu is not a solution to (NLSk), we can expect an energy increment. We have the following “almost 
conservation law”.

Proposition 3.1. Let k ≥ 3, k ∈ Z. Given k/2 > γ > γ(k) := k(4k−1)
14k−3 , N � 1, and initial data u0 ∈ C∞(Rk)

with E(Iu0) ≤ 1, then there exists a δ = δ(‖u0‖L2
x
) > 0 so that the solution u ∈ C([0, δ], Hγ(Rk)) of (NLSk)

satisfies

E(Iu(t)) = E(Iu0) + O(N−γ0(k)+), (3.13)

where γ0(k) := k(6k−1)
8k−2 for all t ∈ [0, δ].

Remark 3.2. This proposition tells us that the modified energy E(Iu(t)) decays with respect to the parame-
ter N . We will see in Section 4 that if we can replace the increment N−γ0(k)+ in the right hand side of (3.13)
with N−γ1(k)+ for some γ1(k) > γ0(k), then the global existence can be improved for all γ > k2

2(k+γ1(k)) . In 
particular, if γ1(k) = ∞, then E(Iu(t)) is conserved, and the global well-posedness holds for all γ > 0.

In order to prove Proposition 3.1, we recall the following interpolation result (see [14, Lemma 12.1]). Let 
η be a smooth, radial, decreasing function which equals 1 for |ξ| ≤ 1 and equals |ξ|−1 for |ξ| ≥ 2. For N ≥ 1
and α ∈ R, we define the spatial Fourier multiplier Jα

N by

Ĵα
Nf(ξ) := (η(N−1ξ))αf̂(ξ). (3.14)

The operator Jα
N is a smoothing operator of order α, and it is the identity on the low frequencies |ξ| ≤ N .

Lemma 3.3 (Interpolation [14]). Let α0 > 0 and n ≥ 1. Suppose that Z, X1, . . . , Xn are translation invariant 
Banach spaces and T is a translation invariant n-linear operator such that

‖Jα
1 T (u1, . . . , un)‖Z �

n∏
i=1

‖Jα
1 ui‖Xi

,

for all u1, . . . , un and all 0 ≤ α ≤ α0. Then one has

‖Jα
NT (u1, . . . , un)‖Z �

n∏
i=1

‖Jα
Nui‖Xi

,

for all u1, . . . , un, all 0 ≤ α ≤ α0, and N ≥ 1, with the implicit constant independent of N .
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Using this interpolation lemma, we are able to prove the following modified version of the usual local 
well-posed result.

Proposition 3.4. Let1 γ ∈ (γ(k), k/2) and u0 ∈ Hγ(Rk) be such that E(Iu0) ≤ 1. Then there is a constant 
δ = δ(‖u0‖L2

x
) so that the solution u to (NLSk) satisfies

‖Iu‖
X

k/2,1/2+
δ

� 1. (3.15)

Here Xγ,b
δ is the space of restrictions of elements of Xγ,b endowed with the norm

‖u‖Xγ,b
δ

:= inf{‖w‖Xγ,b | w|[0,δ]×Rk = u}. (3.16)

Proof. We recall the following estimates involving the Xγ,b spaces which are proved in the Appendix A. 
Let γ ∈ R and ψ ∈ C∞

0 (R) be such that ψ(t) = 1 for t ∈ [−1, 1]. One has

‖ψ(t)eitΛ
k

u0‖Xγ,b � ‖u0‖Hγ
x
, (3.17)∥∥∥ψδ(t)

t∫
0

ei(t−s)Λk

F (s)ds
∥∥∥
Xγ,b

� δ1−b−b′‖F‖Xγ,−b′ , (3.18)

where ψδ(t) := ψ(δ−1t) provided 0 < δ ≤ 1 and

0 < b′ < 1/2 < b, b + b′ < 1. (3.19)

Note that the implicit constants are independent of δ. This implies for 0 < δ ≤ 1 and b, b′ as in (3.19) that

‖eitΛk

u0‖Xγ,b
δ

� ‖u0‖Hγ
x
, (3.20)

∥∥∥ t∫
0

ei(t−s)Λk

F (s)ds
∥∥∥
Xγ,b

δ

� δ1−b−b′‖F‖
Xγ,−b′

δ

. (3.21)

By the Duhamel principle, we have

‖Iu‖
X

k/2,b
δ

=
∥∥∥eitΛk

Iu0 +
t∫

0

eitΛ
k

I(|u|2u)(s)ds
∥∥∥
X

k/2,b
δ

� ‖Iu0‖Hk/2
x

+ δ1−b−b′‖I(|u|2u)‖
X

k/2,−b′
δ

.

By the definition of restriction norm (3.16),

‖Iu‖
X

k/2,b
δ

� ‖Iu0‖Hk/2
x

+ δ1−b−b′‖I(|w|2w)‖Xk/2,−b′ ,

where w agrees with u on [0, δ] × Rk and

‖Iu‖
X

k/2,b
δ

∼ ‖Iw‖Xk/2,b .

Let us assume for the moment that

‖I(|w|2w)‖Xk/2,−b′ � ‖Iw‖3
Xk/2,b . (3.22)

1 See Theorem 1.1 for the definition of γ(k).
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This implies that

‖Iu‖
X

k/2,b
δ

� ‖Iu0‖Hk/2
x

+ δ1−b−b′‖Iu‖3
X

k/2,b
δ

.

Note that

‖Iu0‖Hk/2
x

∼ ‖Iu0‖Ḣk/2
x

+ ‖Iu0‖L2
x
≤ 1 + ‖u0‖L2

x
.

As ‖Iu‖
X

k/2,b
δ

is continuous in the δ variable, the bootstrap argument (see e.g. [21, Section 1.3]) yields

‖Iu‖
X

k/2,b
δ

� 1.

This proves (3.15). It remains to show (3.22). We will take the advantage of interpolation Lemma 3.3. Note 
that the I-operator defined in (2.8) is equal to Jα

N defined in (3.14) with α = k/2 − γ. Thus, by Lemma 3.3,
(3.22) is proved once there is α0 > 0 so that

‖Jα
1 (|w|2w)‖Xk/2,−b′ � ‖Jα

1 w‖3
Xk/2,b ,

for all 0 ≤ α ≤ α0. Splitting w to low and high frequency parts |ξ| � 1 and |ξ| � 1 respectively and using 
definition of Jα

1 , it suffices to show

‖|w|2w‖Xγ,−b′ � ‖w‖3
Xγ,b , (3.23)

for all γ ∈ [γ(k), k/2]. By duality, a Leibniz rule, (3.23) follows from∣∣∣ ∫∫
R×Rk

(〈Λ〉γ w1)w2w3w4dtdx
∣∣∣ � ‖w1‖Xγ,b‖w2‖Xγ,b‖w3‖Xγ,b‖w4‖X0,b′ . (3.24)

Note that the last term should be precise as ‖w4‖X0,b′
τ=−|ξ|k

but it does not effect our estimate. Using Hölder’s 

inequality, we can bound the left hand side of (3.24) as

LHS(3.24) ≤ ‖ 〈Λ〉γ w1‖L4
tL

4
x
‖w2‖L4

tL
4
x
‖w3‖L6

tL
6
x
‖w4‖L3

tL
3
x
.

Since (4, 4) is an admissible pair, Corollary 2.4 gives

‖ 〈Λ〉γ w1‖L4
tL

4
x

� ‖w1‖Xγ,b , ‖w2‖L4
tL

4
x

� ‖w2‖X0,b ≤ ‖w2‖Xγ,b .

Similarly, Sobolev embedding and Corollary 2.4 yield

‖w3‖L6
tL

6
x

� ‖ 〈Λ〉k/6 w3‖L6
tL

3
x

� ‖w3‖Xk/6,b ≤ ‖w3‖Xγ,b .

The last estimate comes from the fact that γ > γ(k) > k/6. Finally, we interpolate between ‖w4‖L2
tL

2
x

=
‖w4‖X0,0 and ‖w4‖L4

tL
4
x

� ‖w4‖X0,1/2+ to get

‖w4‖L3
tL

3
x

� ‖w4‖X0,b′ .

Combing these estimates, we have (3.24). The proof of Proposition 3.4 is now complete. �
We are now able to prove the almost conservation law.
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Proof of Proposition 3.1. By the assumption E(Iu0) ≤ 1, Proposition 3.4 shows that there exists δ =
δ(‖u0‖L2

x
) such that the solution u to (NLSk) satisfies (3.15). We firstly note that the usual energy satisfies

d

dt
E(u(t)) = Re

∫
Rk

∂tu(t, x)(|u(t, x)|2u(t, x) + Λku(t, x))dx

= Re
∫
Rk

∂tu(t, x)(|u(t, x)|2u(t, x) + Λku(t, x) + i∂tu(t, x))dx = 0.

Similarly, we have

d

dt
E(Iu(t)) = Re

∫
Rk

I∂tu(t, x)(|Iu(t, x)|2Iu(t, x) + ΛkIu(t, x) + i∂tIu(t, x))dx

= Re
∫
Rk

I∂tu(t, x)(|Iu(t, x)|2Iu(t, x) − I(|u(t, x)|2u(t, x)))dx.

Here the second line follows by applying I to both sides of (NLSk). Integrating in time and applying the 
Parseval formula, we obtain

E(Iu(t)) − E(Iu0) = Re
δ∫

0

∫
∑4

j=1 ξj=0

(
1 − m(ξ2 + ξ3 + ξ4)

m(ξ2)m(ξ3)m(ξ4)

)
Î∂tu(ξ1)Îu(ξ2)Îu(ξ3)Îu(ξ4)dt.

Here 
∫∑4

j=1 ξj=0 denotes the integration with respect to the hyperplane’s measure δ0(ξ1 + . . .+ξ4)dξ1 . . . dξ4. 
Using that iI∂tu = −ΛkIu − I(|u|2u), we have

|E(Iu(t)) − E(Iu0)| ≤ Term1 + Term2,

where

Term1 =
∣∣∣ δ∫

0

∫
∑4

j=1 ξj=0

μ(ξ2, ξ3, ξ4)̂ΛkIu(ξ1)Îu(ξ2)Îu(ξ3)Îu(ξ4)dt
∣∣∣,

and

Term2 =
∣∣∣ δ∫

0

∫
∑4

j=1 ξj=0

μ(ξ2, ξ3, ξ4) ̂I(|u|2u)(ξ1)Îu(ξ2)Îu(ξ3)Îu(ξ4)dt
∣∣∣,

with

μ(ξ2, ξ3, ξ4) := 1 − m(ξ2 + ξ3 + ξ4)
m(ξ2)m(ξ3)m(ξ4)

.

Our purpose is to prove

Term1 + Term2 � N−γ0(k)+.
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Let us consider the first term (Term1). To do so, we decompose u =
∑

M≥1 PMu =:
∑

M≥1 uM with the 
convention P1u := P≤1u and write Term1 as a sum over all dyadic pieces. By the symmetry of μ in ξ2, ξ3, ξ4
and the fact that the bilinear estimate (2.7) allows complex conjugations on either factors, we may assume 
that M2 ≥ M3 ≥ M4. Thus,

Term1 �
∑

M1,M2,M3,M4≥1
M2≥M3≥M4

A(M1,M2,M3,M4),

where

A(M1,M2,M3,M4) :=
∣∣∣ δ∫

0

∫
∑4

j=1 ξj=0

μ(ξ2, ξ3, ξ4) ̂ΛkIuM1(ξ1)ÎuM2(ξ2)ÎuM3(ξ3)ÎuM4(ξ4)dt
∣∣∣.

For simplifying the notation, we will drop the dependence of M1, M2, M3, M4 and write A instead of 
A(M1, M2, M3, M4). In order to have Term1 � N−γ0(k)+, it suffices to prove

A � N−γ0(k)+M0−
2 . (3.25)

To show (3.25), we will break the frequency interactions into three cases due to the comparison of N
with Mj . It is worth to notice that M1 � M2 due to the fact that 

∑4
j=1 ξj = 0.

Case 1. N � M2. In this case, we have |ξ2|, |ξ3|, |ξ4| � N and |ξ2 + ξ3 + ξ4| ≤ N , hence

m(ξ2 + ξ3 + ξ4) = m(ξ2) = m(ξ3) = m(ξ4) = 1 and μ(ξ2, ξ3, ξ4) = 0.

Thus (3.25) holds trivially.

Case 2. M2 � N � M3 ≥ M4. Since 
∑4

j=1 ξj = 0, we get M1 ∼ M2. We also have from the mean value 
theorem that

|μ(ξ2, ξ3, ξ4)| =
∣∣∣1 − m(ξ2 + ξ3 + ξ4)

m(ξ2)

∣∣∣ � |∇m(ξ2) · (ξ3 + ξ4)|
m(ξ2)

� M3

M2
.

The pointwise bound, Hölder’s inequality, Plancherel theorem and bilinear estimate (2.7) yield

A � M3

M2
‖ΛkIuM1IuM3‖L2

tL
2
x
‖IuM2IuM4‖L2

tL
2
x

� M3

M2

(M3

M1

)(k−1)/2(M4

M2

)(k−1)/2
Mk

1

4∏
j=1

‖IuMj
‖X0,1/2+

� M3

M2

(M3

M1

)(k−1)/2(M4

M2

)(k−1)/2 M
k/2
1

M
k/2
2 〈M3〉k/2 〈M4〉k/2

4∏
j=1

‖IuMj
‖Xk/2,1/2+

=
(M3

N

)1/2(M1

M2

)1/2( N

M2

)k−
N−(k−1/2)+M0−

2

4∏
j=1

‖IuMj
‖Xk/2,1/2+

� N−(k−1/2)+M0−
2

4∏
j=1

‖IuMj
‖Xk/2,1/2+ . (3.26)

Using (3.15) and the fact that γ0(k) < k − 1/2 for k ≥ 3, k ∈ Z, we have (3.25).
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Case 3. M2 ≥ M3 � N . In this case, we simply bound

|μ(ξ2, ξ3, ξ4)| � m(ξ1)
m(ξ2)m(ξ3)m(ξ4)

.

Here we use that m(ξ1) � m(ξ2) and m(ξ3) ≤ m(ξ4) ≤ 1 due to the fact that M1 � M2 and M3 ≥ M4.

Subcase 3a. M2 � M3 � N . We see that M1 ∼ M2 since 
∑4

j=1 ξj = 0. The pointwise bound, Hölder’s 
inequality, Plancherel theorem and bilinear estimate (2.7) again give

A � m(M1)
m(M2)m(M3)m(M4)

‖ΛkIuM1IuM4‖L2
tL

2
x
‖IuM2IuM3‖L2

tL
2
x

� m(M1)
m(M2)m(M3)m(M4)

(M4

M1

)(k−1)/2(M3

M2

)(k−1)/2 M
k/2
1

M
k/2
2 M

k/2
3 〈M4〉k/2

4∏
j=1

‖IuMj
‖Xk/2,1/2+ .

Thanks to (3.15), we only need to show

m(M1)
m(M2)m(M3)m(M4)

(M4

M1

)(k−1)/2(M3

M2

)(k−1)/2 M
k/2
1

M
k/2
2 M

k/2
3 〈M4〉k/2

� N−γ0(k)+M0−
2 . (3.27)

Remark that the function m(λ)λα is increasing, and m(λ) 〈λ〉α is bounded below for any α + γ − k/2 > 0
due to

(m(λ)λα)′ =
{

αλα−1 if 1 ≤ λ ≤ N,

Nk/2−γ(α + γ − k/2)λα+γ−k/2−1 if λ ≥ 2N.

We shall shortly choose an appropriate value of α, says α(k), so that

m(M4) 〈M4〉α(k) � 1, m(M3)Mα(k)
3 � m(N)Nα(k) = Nα(k). (3.28)

Using that m(M1) ∼ m(M2), we have

LHS(3.27) � M
α(k)−1/2
3 〈M4〉α(k)−1/2

M
1/2
1

m(M3)Mα(k)
3 m(M4) 〈M4〉α(k)

M
k−1/2
2

� 1
Nα(k)M

k−2α(k)
2

(M3

M2

)α(k)−1/2( 〈M4〉
M2

)α(k)−1/2(M1

M2

)1/2

� N−(k−α(k))+M0−
2 .

Therefore, if we choose α(k) so that γ0(k) = k − α(k) or α(k) = k − γ0(k) = k(2k−1)
8k−2 , then we get (3.25). 

Note that α(k) + γ(k) − k/2 ≥ 0 for k ≥ 3, k ∈ Z, hence (3.28) holds.

Subcase 3b. M2 ∼ M3 � N . In this case, we see that M1 � M2. Arguing as in Subcase 3a, we obtain

A � m(M1)
m(M2)m(M3)m(M4)

‖ΛkIuM1IuM2‖L2
tL

2
x
‖IuM3IuM4‖L2

tL
2
x

� m(M1)
m(M2)m(M3)m(M4)

(M1

M2

)(k−1)/2(M4

M3

)(k−1)/2 〈M1〉k/2

M
k/2
2 M

k/2
3 〈M4〉k/2

4∏
j=1

‖IuMj
‖Xk/2,1/2+ .

As in Subcase 3a, our aim is to prove



186 V.D. Dinh / J. Math. Anal. Appl. 458 (2018) 174–192
m(M1)
m(M2)m(M3)m(M4)

(M1

M2

)(k−1)/2(M4

M3

)(k−1)/2 〈M1〉k/2

M
k/2
2 M

k/2
3 〈M4〉k/2

� N−γ0(k)+M0−
2 . (3.29)

We use (3.28) to get

LHS(3.29) � m(M1)
m(M2)m(M3)m(M4) 〈M4〉1/2 Mk−1/2

3

� m(M1)Mα(k)
2 〈M4〉α(k)−1/2

m(M2)Mα(k)
2 m(M3)Mα(k)

3 m(M4) 〈M4〉α(k)
M

k−α(k)−1/2
3

� 1
N2α(k)

(M2

M3

)α(k)( 〈M4〉
M3

)α(k)−1/2 1
M

k−3α(k)
3

� N−(k−α(k))+M0−
2 .

Choosing α(k) as in Subcase 3a, we get (3.25).
We now consider the second term (Term2). We again decompose u in dyadic frequencies, u =

∑
M≥1 uM . 

By the symmetry, we can assume that M2 ≥ M3 ≥ M4. We can assume further that M2 � N since 
μ(ξ2, ξ3, ξ4) vanishes otherwise. Thus,

Term2 �
∑

M1,M2,M3,M4≥1
M2≥M3≥M4

B(M1,M2,M3,M4),

where

B(M1,M2,M3,M4) :=
∣∣∣ δ∫

0

∫
∑4

j=1 ξj=0

μ(ξ2, ξ3, ξ4) ̂PM1I(|u|2u)(ξ1)ÎuM2(ξ2)ÎuM3(ξ3)ÎuM4(ξ4)dt
∣∣∣.

As for the Term1, we will use the notation B instead of B(M1, M2, M3, M4). Using the trivial bound

|μ(ξ2, ξ3, ξ4)| � m(M1)
m(M2)m(M3)m(M4)

,

Hölder’s inequality and Plancherel theorem, we bound

B � m(M1)
m(M2)m(M3)m(M4)

‖PM1I(|u|2u)‖L2
tL

2
x
‖IuM2‖L4

tL
4
x
‖IuM3‖L4

tL
4
x
‖IuM4‖L∞

t L∞
x
.

Lemma 3.5. We have

‖PM1I(|u|2u)‖L2
tL

2
x

� 1
〈M1〉k/2

‖Iu‖3
Xk/2,1/2+ , (3.30)

‖IuMj
‖L4

tL
4
x

� 1
〈Mj〉k/2

‖IuMj
‖Xk/2,1/2+ , j = 2, 3, (3.31)

‖IuM4‖L∞
t L∞

x
� ‖IuM4‖Xk/2,1/2+ . (3.32)

Proof. The estimate (3.30) is in turn equivalent to

‖ 〈Λ〉k/2 PM1I(|u|2u)‖L2L2 � ‖Iu‖3
k/2,1/2+ .
t x X
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Since 〈Λ〉k/2 I obeys a Leibniz rule, it suffices to prove

‖PM1((〈Λ〉
k/2

Iu1)u2u3)‖L2
tL

2
x

�
3∏

j=1
‖Iuj‖Xk/2,1/2+ . (3.33)

The Littlewood–Paley theorem and Hölder’s inequality imply

LHS(3.33) � ‖ 〈Λ〉k/2 Iu1‖L4
tL

4
x
‖u2‖L8

tL
8
x
‖u3‖L8

tL
8
x
.

We have from Strichartz estimate (2.5) that

‖ 〈Λ〉k/2 Iu1‖L4
tL

4
x

� ‖ 〈Λ〉k/2 Iu1‖X0,1/2+ = ‖Iu1‖Xk/2,1/2+ .

Combining Sobolev embedding and Strichartz estimate (2.5) yield

‖u2‖L8
tL

8
x

� ‖ 〈Λ〉k/4 u2‖L8
tL

8/3
x

� ‖ 〈Λ〉k/4 u2‖X0,1/2+ � ‖Iu2‖Xk/2,1/2+ ,

where the last estimate follows from (2.11). Similarly for ‖u3‖L8
tL

8
x
. This shows (3.33). The estimate (3.31)

follows easily from Strichartz estimate. For (3.32), we use Sobolev embedding and Strichartz estimate to 
get

‖IuM4‖L∞
t L∞

x
� ‖ 〈Λ〉k/2 IuM4‖L∞

t L2
x

� ‖ 〈Λ〉k/2 IuM4‖X0,1/2+ = ‖IuM4‖Xk/2,1/2+ .

The proof is complete. �
We use Lemma 3.5 to bound

B � m(M1)
m(M2)m(M3)m(M4)

1
〈M1〉k/2 〈M2〉k/2 〈M3〉k/2

‖Iu‖Xk/2,1/2+

4∏
j=2

‖IuMj
‖Xk/2,1/2+ ,

with M2 ≥ M3 ≥ M4 and M2 � N . Using (3.15), the estimate (3.25) follows once we have

m(M1)
m(M2)m(M3)m(M4)

1
〈M1〉k/2 〈M2〉k/2 〈M3〉k/2

� N−γ0(k)+M0−
2 . (3.34)

We now break the frequency interactions into two cases: M2 ∼ M3 and M2 ∼ M1 since 
∑4

j=1 ξj = 0.

Case 1. M2 ∼ M3, M2 ≥ M3 ≥ M4 and M2 � N . We see that

LHS(3.34) ∼ m(M1)
(m(M2))2m(M4)

1
〈M1〉k/2 〈M2〉k

� m(M1)
N2α(k)m(M4) 〈M1〉k/2 〈M2〉k−2α(k)

� 1
N2α(k)

1
m(M4) 〈M2〉k−2α(k) � 1

N2α(k)
1

M
k−3α(k)
2

� N−(k−α(k))+M0−
2 .

Here we use that m(M2) 〈M2〉α(k) ≥ m(N)Nα(k) = Nα(k), m(M1) � 〈M1〉k/2 and that m(y) 〈x〉α(k) � 1 for 
all 1 ≤ y ≤ x.
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Case 2. M2 ∼ M1, M2 ≥ M3 ≥ M4 and M2 � N . We have

LHS(3.34) � 1
m(M3)m(M4)

1
〈M2〉k 〈M3〉k/2

� 1
m(M3) 〈M3〉α(k)

1
m(M4) 〈M2〉α(k)

1
〈M2〉k−α(k) 〈M3〉k/2−α(k)

� N−(k−α(k))+M0−
2 .

Here we use again m(M3) 〈M3〉α(k)
, m(M4) 〈M2〉α(k) � 1. By choosing α(k) as in Subcase 3a, we prove

(3.34). The proof of Proposition 3.1 is now complete. �
Remark 3.6. Let us now comment on the choices of α(k) and γ0(k). As mentioned in Remark 3.2, if the 
increment of the modified energy is N−γ0(k), then we can show (see Section 4, after (4.39)) that the global 
well-posedness holds for data in Hγ(Rk) with γ > k2

2(k+γ0(k)) =: γ(k). We learn from (3.26) that γ0(k) ≤
k − 1/2, hence γ(k) ≥ k2

4k−1 . On the other hand, in Subcase 3a, we need α(k) + γ − k/2 > 0 and α(k) =
k− γ0(k). Since γ > γ(k), we have α(k) + γ − k/2 > α(k) + γ(k) − k/2 ≥ α(k) + k2

4k−1 − k
2 . We thus choose 

α(k) := k
2 − k2

4k−1 = k(2k−1)
8k−2 , hence γ0(k) = k − α(k) = k(6k−1)

8k−2 .

4. The proof of Theorem 1.1

We now are able to show the global existence given in Theorem 1.1. We only consider positive time, the 
negative one is treated similarly. The conservation of mass and Lemma 2.7 give

‖u(t)‖2
Hγ

x
� ‖Iu(t)‖2

H
k/2
x

∼ ‖Iu(t)‖2
Ḣ

k/2
x

+ ‖Iu(t)‖2
L2

x
� E(Iu(t)) + ‖u0‖2

L2
x
. (4.35)

By density argument, we may assume that u0 ∈ C∞
0 (Rk). Let u be a global solution to (NLSk) with initial 

data u0. As E(Iu0) is not necessarily small, we will use the scaling (1.1) to make the energy of rescaled 
initial data small in order to apply the almost conservation law given in Proposition 3.1. Let λ > 0 and uλ

be as in (1.1). We have

E(Iuλ(0)) = 1
2‖Iuλ(0)‖2

Ḣ
k/2
x

+ 1
4‖Iuλ(0)‖4

L4
x
. (4.36)

We then estimate

‖Iuλ(0)‖2
Ḣ

k/2
x

� N2(k/2−γ)‖uλ(0)‖2
Ḣγ

x
= N2(k/2−γ)λ−2γ‖u0‖2

Ḣγ
x
,

and

‖Iuλ(0)‖4
L4

x
� ‖uλ(0)‖4

L4
x

= λ−k‖u0‖4
L4

x
� λ−k‖u0‖4

Hγ
x
.

Note that γ > γ(k) ≥ k/4 allows us to use Sobolev embedding in the last inequality. Thus, (4.36) gives for 
λ � 1,

E(Iuλ(0)) � (N2(k/2−γ)λ−2γ + λ−k)(1 + ‖u0‖Hγ
x
)4 ≤ C0N

2(k/2−γ)λ−2γ(1 + ‖u0‖Hγ
x
)4.

We now choose

λ := N
k/2−γ

γ

( 1
2C0

)− 1
2γ (1 + ‖u0‖Hγ

x
)

2
γ (4.37)
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so that E(Iuλ(0)) ≤ 1/2. We then apply Proposition 3.1 for uλ(0). Note that we may reapply this proposition 
until E(Iuλ(t)) reaches 1, that is at least C1N

γ0(k)− times. Therefore,

E(Iuλ(C1N
γ0(k)−δ)) ∼ 1. (4.38)

Now given any T � 1, we choose N � 1 so that

T ∼ Nγ0(k)−

λk
C1δ.

Using (4.37), we see that

T ∼ N
2(γ0(k)+k)γ−k2

2γ −. (4.39)

Here γ > γ(k) = k2

2(γ0(k)+k) , hence the power of N is positive and the choice of N makes sense for arbitrary 
T � 1. Next, using (1.1), a direct computation shows

E(Iu(t)) = λkE(Iuλ(λkt)).

Thus, we have from (4.37), (4.38) and (4.39) that

E(Iu(T )) = λkE(Iuλ(λkT )) = λkE(Iuλ(C1N
γ0(k)−δ))

∼ λk ≤ N
k(k/2−γ)

γ ∼ T
k(k−2γ)

2(γ0(k)+k)γ−k2 +
.

This shows that there exists C2 = C2(‖u0‖Hγ
x
, δ) such that

E(Iu(T )) ≤ C2T
k(k−2γ)

2(γ0(k)+k)γ−k2 +
,

for T � 1. This together with (4.35) show that

‖u(T )‖Hγ
x

� C3T
k(k−2γ)

2(2(γ0(k)+k)γ−k2)+ + C4,

where C3, C4 depend only on ‖u0‖Hγ
x
. The proof of Theorem 1.1 is complete.
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Appendix A. Linear estimate in Xγ,b spaces

In this section, we will give the proof of linear estimates (3.17) and (3.18) which is essentially given 
in [17]. The estimate (3.17) follows from the fact that

‖u‖Xγ,b = ‖e−itΛk

u‖Hb
tH

γ
x
. (A.1)

Indeed, we have
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‖ψ(t)eitΛ
k

u0‖Xγ,b = ‖e−itΛk

ψ(t)eitΛ
k

u0‖Hb
tH

γ
x

= ‖ψ‖Hb
t
‖u0‖Hγ

x
� ‖u0‖Hγ

x
.

For (3.18), we firstly remark that it is a consequence of the following estimate

∥∥∥ψδ(t)
t∫

0

g(s)ds
∥∥∥
Hb

t

� δ1−b−b′‖g‖
H−b′

t
. (A.2)

In fact, using (A.1), it suffices to prove

∥∥∥ψδ(t)
t∫

0

G(s)ds
∥∥∥
Hb

tH
γ
x

� ‖G‖
H−b′

t Hγ
x
. (A.3)

We now apply (A.2) for g(s) = Ĝ(s, ξ) with ξ fixed to have

∥∥∥ψδ(t)
t∫

0

Ĝ(s, ξ)ds
∥∥∥
Hb

t

� δ1−b−b′‖Ĝ(t, ξ)‖
H−b′

t
, (A.4)

where ̂· is the spatial Fourier transform. If we denote

H(t, x) := ψδ(t)
t∫

0

G(s, x)ds,

then (A.4) becomes

‖Ĥ(t, ξ)‖Hb
t

� δ1−b−b′‖Ĝ(t, ξ)‖
H−b′

t
.

Squaring the above estimate, multiplying both sides with 〈ξ〉2γ and integrating over Rk, we obtain (A.3). 
It remains to prove (A.2). To do so, we write

ψδ(t)
t∫

0

g(s)ds = ψδ(t)
∫
R

( t∫
0

eiτsds
)
ĝ(τ)dτ = ψδ(t)

∫
R

eitτ − 1
iτ

ĝ(τ)dτ

= ψδ(t)
∑
k≥1

tk

k!

∫
|δτ |≤1

(iτ)k−1ĝ(τ)dτ − ψδ(t)
∫

|δτ |≥1

(iτ)−1ĝ(τ)dτ

+ ψδ(t)
∫

|δτ |≥1

(iτ)−1eitτ ĝ(τ)dτ =: I + II + III .

Let us consider the first term. The Cauchy–Schwarz inequality gives

‖I‖Hb
t
≤

∑
k≥1

1
k!‖t

kψδ‖Hb
t
δ1−k‖g‖

H−b′
t

( ∫
|δτ |≤1

〈τ〉2b
′
dτ

)1/2
.

Using that tkψδ(t) = δkϕk(δ−1t) where ϕk(t) = tkψ(t), we have

‖tkψδ‖Hb
t

= δk‖ϕk(δ−1t)‖Hb
t

= δk
(∫

〈τ〉2b δ2|ϕ̂k(δτ)|2dτ
)1/2

� δkδ1/2−b‖ϕk‖Hb
t
.

R
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We also have ∫
|δτ |≤1

〈τ〉2b
′
dτ =

∫
|τ |≤1

〈
δ−1τ

〉2b′
δ−1dτ � δ−1−2b′ ,

since b′ < 1/2. This implies

‖I‖Hb
t

�
∑
k≥1

1
k!δ

kδ1/2−bδ1−k‖g‖
H−b′

t
δ−1/2−b′ � δ1−b−b′‖g‖

H−b′
t

.

Similarly, we have

‖II‖Hb
t

� ‖ψδ‖Hb
t
‖g‖

H−b′
t

( ∫
|δτ |≥1

|τ |−2 〈τ〉2b
′
dτ

)1/2
� δ1−b−b′‖g‖

H−b′
t

,

by using that ‖ψδ‖Hb
t

� δ1/2−b‖ψ‖Hb
t

� δ1/2−b and

∫
|δτ |≥1

|τ |−2 〈τ〉2b
′
dτ =

∫
|τ |≥1

|δ−1τ |−2 〈δ−1τ
〉2b′

δ−1dτ ≤ δ1−2b′
∫

|τ |≥1

|τ |−2 〈τ〉2b
′
dτ � δ1−2b′ .

Here b′ < 1/2 hence 2(1 − b′) > 1 implies the last integral is convergent. We finally treat the third term as 
follows. Set

J(t) :=
∫

|δτ |≥1

(iτ)−1ĝ(τ)eitτdτ.

We see that

Ĵ(ζ) =
∫

|δτ |≥1

(iτ)−1ĝ(τ)δ0(ζ − τ)dτ,

where δ0 is the Dirac delta function. This yields that

‖J‖Hb
t

=
(∫

〈ζ〉2b |Ĵ(ζ)|2dζ
)1/2

=
( ∫
|δτ |≥1

〈τ〉2b |τ |−2|ĝ(τ)|2dτ
)1/2

≤ ‖g‖
H−b′

t
sup

|δτ |≥1
|τ |−1 〈τ〉b+b′ � δ1−b−b′‖g‖

H−b′
t

.

Similarly,

‖J‖L2
t

� δ1−b′‖g‖
H−b′

t
.

Thus, the Young’s inequality gives

‖III‖Hb
t

= ‖ 〈τ〉b (ψ̂δ � Ĵ)‖L2
τ

� ‖|τ |bψ̂δ‖L1
τ
‖Ĵ‖L2

τ
+ ‖ψ̂δ‖L1

τ
‖ 〈τ〉b Ĵ‖L2

τ
� δ1−b−b′‖g‖

H−b′
t

.

Here we use the fact that 〈τ〉b � |τ − ζ|b + 〈ζ〉b to have the first estimate. This completes the proof.
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