J. Differential Equations 248 (2010) 1458-1472

Contents lists available at ScienceDirect

Journal of Differential Equations PR

www.elsevier.com/locate/jde

Global well-posedness for a fifth-order shallow water
equation in Sobolev spaces™

Xingyu Yang, Yongsheng Li*

Department of Mathematics, South China University of Technology, Guangzhou, Guangdong 510640, PR China

ARTICLE INFO ABSTRACT

Article history: The Cauchy problem of a fifth-order shallow water equation
Received 28 April 2009

Revised 5 January 2010

Available online 20 January 2010 dru — 833[11 + 3)‘:’1.1 + 3uoyu — 23xu8fu — ua;}u — 3;11 =0
13\/'55%3 is shown to be globally well-posed in Sobolev spaces H*(R) for

Q s > (6+/10 — 17) /4. The proof relies on the I-method developed by

Colliander, Keel, Staffilani, Takaoka and Tao. For this equation lacks

Keywords: . . . . .
Shallow water equation scaling invariance, we reconsider the local result and pay special
Global well-posedness attention to the relationship between the lifespan of the local
I-method solution and the initial data. We prove the almost conservation
Almost conservation law law, and combine it with the local result to obtain the global well-
Bilinear estimates posedness.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

We consider the global well-posedness for the Cauchy problem of a fifth-order shallow water
equation

et — D2 9pu + DU 4 3udyu — 205ud?u —udju — d;u=0, xeR, >0, (11)

u(-,0) =up(-) € H*(R). (1.2)

Eq. (1.1) is a higher-order modification of the following Camassa-Holm equation
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2 2 3., —
Ol — Oy 0pU 4 3UdyU — 205Udy U — ud u =0. (1.3)

We may observe more precisely the connection between (1.1) and (1.3) by writing them into the
following forms

1 _ 1
deu + 3u + Ea,(u2 +(1-23%) 1ax[u2 + 5(axu)2] =0 (14)
and
1 2 2\—1 2 ] 2
du + EE)Xu +(1-87) ax|u*+ E(axu) =0, (1.5)

respectively.

The well-posedness for the initial value problem of Eq. (1.1) in Sobolev spaces has been investi-
gated by several authors. For the periodic case, Himonas and Misiolek [12,13] proved the initial value
problem of Eq. (1.1) is locally well-posed in H(T) for s > 1/2, and Gorsky [9] proved a similar result
for s =1/2 under the restriction of small initial data, where T is the one-dimensional torus. For the
non-periodic case, Himonas and Misiolek [14] proved that the initial value problem of Eq. (1.1) is
locally well-posed in H*(R) for s > 1/2. Using the bilinear estimate method initiated by Bourgain [1],
Byers [2] improved their result and proved the local well-posedness in HS(R) for s > 1/4. For both pe-
riodic and non-periodic cases, global well-posedness for Eq. (1.1) in H' follows from the local results
and the H! energy conservation law. Recently, Wang and Cui [17] proved the global well-posedness
for (11)-(1.2) in HS(R) for s > (5+/7 — 10)/4 by using the I-method, which is initially developed
by Colliander, Keel, Staffilani, Takaoka and Tao [4-7]. Eq. (1.3) has been intensively studied by many
authors, for instance, see [3,8,16,18] and references therein.

In this paper we use the I-method to prove the global well-posedness for (1.1)-(1.2) in H*(R) for
s > (6+/10 — 17)/4 and thus improve the result in [17]. We reconsider the local well-posedness result
and pay special attention to the relationship between the lifespan of the local solution and the initial
data, which is important for equations that lack scaling invariance in the iteration process. This is
done by proving the bilinear estimates involving an operator I, which will be defined below. Moreover,
we prove the almost conservation law, which implies that the modified energy increases slowly and
is used in the iteration process. However, there is still a gap in the regularity index between the
condition s > 1/4 for the local well-posedness as far as we know and the condition s > (6+/10—17)/4
for the global well-posedness in this paper.

First we introduce some notations. We denote the Fourier transform in x and t of u by il or Zu,
and in x by Fyu. DY denotes the Fourier multiplier operator with symbol |£|?. {W (t) = exp(—t33)}ecr
is the free Airy group defined by Zx(W (t)ug)(€) = exp(it£3)iig(¢). The notation a+ and a— denote
respectively a+ & and a — ¢ for an arbitrary small positive number ¢. For any positive A and B, A~ B
means that there exists a generic constant C such that A < CB and B < CA. Denote (-) =1+ -,
o=1—§&3 oj:r,-—g]?, j=1,2,3.

Let ¥ € C°(R) be a radially decreasing function with ¢ =1 on [0, 1] and suppy € [—1, 2], and
Vs () =y (t/3), § > 0.

Definition 1.1. For s,b € R, we define the space X;; to be the completion of the Schwartz space
Z(R?) with respect to the norm

lullx,, = [ () €)*aE, O 212+

For any given § > 0, we define the function space be to be the restriction of Xs;, on R x [0, §]
with norm
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”u”be =inf{||U|Ix,,: U € Xsp, Ulrx[o.51 =}

From Lemma 1.6 in [10], for u € Xsb, there exists an extension i € X;p, i.e. i =u on [0, §], and
for s’ <s,

Illx, , =l - (1.6)

Let s <1 and N>> 1 be fixed. We define the Fourier multiplier operator I : HS(R) — H!(R) by
Fx(Iu) (&) =m(§) Fxu(&), where m(¢) is a smooth, radially monotone, even function satisfying

1, EI<N
m@)={(%)5-1, €] > 2N.

Then there exists a constant C independent of N such that
lullgs < Hufl g < CN'°Juflps: (1.7)
lullx,p < IHullx,, < CN'*[lullx, (1.8)
The main result of this paper is as follows.
Theorem 1.1. The Cauchy problem of Eq. (1.1) is globally well-posed in H(R) for s > (64/10 — 17) /4. More

precisely, for any given T > 1, (1.1)-(1.2) possesses a unique solution u € C([0, T]; H*(R)), and the mapping
ug — u belongs to C(H’(R); C([0, T]; H*(R))). Moreover, the solution u satisfies

sup Ju®] 4 < oll 747,

where y = [(s — (6+/10 — 17)/4) "'+

This paper is arranged as follows. In Section 2, we establish linear and bilinear estimates, which
will be used to prove the local well-posedness. In Section 3, we present the local result, giving the
relationship between the lifespan of the local solution and the initial data. In Section 4, we prove the
almost conservation law. In Section 5, we show the global well-posedness by an iteration process, and
thus complete the proof of Theorem 1.1.

2. Linear and bilinear estimates
In this section, we establish linear and bilinear estimates, which will be used in the next section.

In particular, we consider bilinear estimates involving the operator I.
First we recall some preliminary estimates. The following inequalities were established in [15]:

”u”]_;‘;L‘l C”””X 1. ) (2.1)

w

llullpags < Cllulix, 5 (2.2)

N

1
| D3 ufl a3 < Cllulix (2.3)

1, -
0.§+

From [10] or [11], we have
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11
[DX 12 u2) | g1z < Cllunllx, , luzllx, - (24)
where the operator % defined as
F(1%(ur,u2)) (€, 7) = / &1 — &% U1 (51, T2 (&2, T2) d&1 dTy.
§=6116
T=T1+1T2
LletseR, —1/2<b<b' <00r0<b<b' <1/2,8€(0,1). Then
Isullx,, < C8" Plullx,,: (2.5)
lullys, < C8"Plully . (26)
For the proof of (2.5) we refer readers to [10], and (2.6) follows from (2.5).
From the linear estimates in [15], we can easily obtain their variant version.
Theorem 2.1. Let s € R, b > 1/2. Then the following inequalities hold
[W o] s < Clluollss: (2.7)
t
! / !
/W(t —t)u(t')dt < C||u||x§,b_l. (2.8)
0 X2
Now we turn to establish bilinear estimates.
Theorem 2.2. Assume 3/8 <s < 1,1/2 <b <min{l,s+ 1/8} and 0 < § < 1, then it holds that
-1 _ _
1101 =82) " dx@xnrdau) o < C(8'™ + 8% NP)lIunllys Nuzllys (2.9)

where « = min{5/4 — b, 3/8 + s — b}, 8 = min{—1/4, 3s — 23/8}.

Proof. By duality and Plancherel identity, it suffices to show that for all u € X 1_p, uj € Xg p =12,

mE)  ll&l&] -~ 2 2
T= , . . T2)| dé dT dg; d
/ mE)mE) (E)(&)(Sz)‘%u(s )| |1 (51, T1) | |U2(62, T2)| dE dT dE1 dTy
E=E1+8&
T=T1+T2
<C(8"7P + 8% NP)llullxg , , i1 l1xg, 211X (2.10)

where i is an extension of uj. Without loss of generality, we may assume that %\u, ftj are nonneg-
ative. For simplicity of notations, we drop the ~ over u; in the following.
By symmetry of & and &, we need only to control the integral in the domain

D={¢.1.61.11.6.0): §=&+&, T=11+ 1T, |&]|<[&l}.
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In order to estimate the integral, we split the domain of integration D into five regions:

{¢. 7,61, 11,6, 12) € D: |&2] <4N};

{€.1.6,11,6, 1) €D: |&] > 4N, |&] L&, 6] <2N};
{€.1.6,11,6, 1) €D: |&] > 4N, |&] L&, |&]>2N};
{
{

(6,7,61,11, 6, 12) € D: |&2] > 4N, |&1] ~ |&], 5] <2N};
(6,7,61, 71,6, 1) € D: |&2] > 4N, |&1] ~ &), |5 > 2N},

D1
Dy
D;
Dy
Ds

We denote the integral restricted to these regions in their appearing order by 13y, T», 73, 74, 75,
respectively.
1. Estimate of 77. By using Plancherel identity, (2.1), (2.5) and (2.6), we have

RETES C/%\Uﬁlﬁzdfdfdél dry
D4
< CllwaulngLg “ulHLﬁLf “u2“L,‘}L;‘

< Cllysulixoollutlixg o luzllxg 5
'3

1
3+

1-b 1_ 1_
< 8" Plullx, -85 urllx, , -85 Nuzllx,

N
N

(3-b)—
< (83 el x4 1t 11X 121 Xg -

2. Estimate of 73. Noticing that || ~ |&2|, and using (2.1), (2.5), (2.6), we have

6 el ~ .
7| <C N N Ysuugup dé dt d& dTy

D;
< Clivsullz2 llualipapalliuz i
(5-b)—
< (83 el x4 1t 110 121 X -
3. Estimate of 73. Noticing |&1 £ &| ~ |&2|, and using (2.4), (2.5), we have

H “(|sl|>”(|sz|>” HIBHE .
BIsCIv N N EEnEs dé dt dp d
- D/<”) N N ) e orttedsdrdiidn

3

s—1 |$1|1_S - 1 1. A

<CN W%M& + 861215 — &12uuxdé dr dé1 dTy
D3

1 1
-1 2712
<SCNTHsullzz | DX 12 i, u2)| 2

“141-b
SCNT8 " lullxgq_p 1t llxe, U21llxq, -



X. Yang, Y. Li/ ]. Differential Equations 248 (2010) 1458-1472 1463

4, Estimate of 74.

&1 1821\ EllE1E] ~
T4 <C _-— dédtdéid
14l /( N) <N) ) (g VUil d dr gy dry

4

1-s 1-s
gCNz(S_”/W@mazdsdrd& dry.

Next we deal with the cases 7/8 <s <1 and 3/8 <s < 7/8 in different ways.
(1) 7/8 <s < 1. By using (2.2), (2.3), (2.5) and (2.6), we have

Tl <CN*%/@a1|sz|iﬁzdsdrda dn;

1 1
-z 1
S ENT# 1Ysull 22 llull 2 | D uz ”L;‘L?

1
S ENTH [sullxoollutlix, s +||uz||x0yl+

12

—11-p 1_ 1_
SCNT487 ullxg - 872 Nlurlix, 4 - 58 luzlix, 4

™
N

-1 32 _p—
<CN7445'4 Ul x4 1t 11 xq 1211 X -
(2) 3/8 <s<7/8. Since 0 — 01 — 02 = 3££1&;, one of the following cases always occurs:
@) lo| > |§&162; (b) lo1] = 1618215 (©) loz| > 1£&182]. (211)

We consider the three cases separately. If (a) holds, for s <7/8 and 7/8 — s <1 — b, the integral 74
restricted to this domain is bounded by

1-s 1-s
CN26-D / |$l7| |€27| €] — (o) %751/’15\111]]7:12 d& dt d&; dty
(ENEITS1&1|370 8870

< CN26-D) / (0)5 S puily |&,| 70 dE dr d&y dTy
Dy

- 1
< CN26-D)| (@) SPsu I 1212 llullpags | D5 u2 ”L;‘L?

2(s—1
<CN*¢ )III/faLllle7 lullx, s  Mu2llx;
g =S 0.5+

w

2(s—1) g(24s—b)—
< CONZEDSGEHD= gyl llxg , U2l xg , -

If (b) or (c) holds, the argument is similar to case (a).
5. Estimate of 715.

s—1 1-s 1-s
|75 <C/(%) <%> <%> Vsuily iy d& dt d&; dry
Ds

1-s 1-s
CNS 1/ |E1||£:|1|§2s| Iﬂgufhﬁzdfdl'd&dl’].
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Similarly, we deal with the cases 7/8 <s <1 and 3/8 <s < 7/8 in different ways.
(1) 7/8 <s < 1. We have

75| < CN%/@ﬁﬂEzl%‘flzdde‘i& dn

1 1
-z L
S EN"#1gsull 2 2 llull 2 | D3 uz ||L;;L?
—1.32-p—
<CN725'4 il xg,_p Ul xqp 11211 X -

(2) 3/8 < s <7/8. We consider the three cases (a), (b), (c) in (2.11) separately. If (a) holds, the
integral 75 restricted to this domain is bounded by

1-s 1-s
CNS‘1/ |§17| Ile i (0)%—5w uil1fly dé dr dé; dy
Bs [E11=S |18 75|51 |8 5|5 87

35— 23 T _g~n 1,
SCNZTs [ (0)8 7 Ysuu|é2|4udé dt dédny
Ds

—_— 1
<CON*75 ()5t 2z Nt s | D 2

3__
<CN* $ lysullx, 1- Juallxg s lluzlixg o,

O3+ 0.3+

SONF8GH Dl  u lxy, 12l1 x, -
If (b) or (c) holds, the argument is similar to the case (a). The proof of Theorem 2.2 is complete. O

Theorem 2.3. Assume 0 <s<1,1/2<b< (2+5)/3and 0 < § < 1, then it holds that

[1oxurun) s < C8'PlIunllgs IHuallys - (2.12)

The proof of Theorem 2.3 is similar to that of Theorem 2.2 and so is omitted.
3. Local well-posedness result

In this section, we aim to present the local well-posedness result, especially focus our attention on
the relationship between the lifespan of the local solution and the initial data.

Let 3/8 <s<1,1/2 <b<min{(2 +5)/3,s+1/8},0 <8 < 1. For ug € H*(R), we define a ball in
XB
s,b

B={ueX]y: lueX]y, lull, <2C|uoly ) (3.1)

and a mapping

Su) =W ()ug — /W(t —t)B(u,u)(t')dt'’, ue2B, (32)
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where
1, 2 2\—1 2, 1 2
B(u,u) = S0’ + (1—07) "ox|u®+ 5 @an” |
For u € 4, by using Theorems 2.1-2.3, we obtain

[1s@] . <Clluolly + c(s't +3“*Nﬂ)||1u||§(?b
< Clllugllygn +C (817 + 6%~ NP) (2C gl 1),

where «, 8 are defined as in Theorem 2.2. By choosing N suitable large and

8~ ||1uo||;,11+b, (33)
we have
C' ™ (2C o)’ < SCluo (3.4)
C8%~NP (2C ol 1) < %cnluonm, (3.5)
and thus
S(AB) C A.

In an analogous way, for u, v € 4, by (3.4) and (3.5), we obtain
IS(u) —IS(v
1@ =155
< 1-b a—n B —
<C(E'7+8%N )(IIIUleg_b + IIIVIIX;SVb)IIIu Wiixs,
<1 I I
<=1Vl .

Therefore, S is a contraction mapping on Z. The fixed point u is the unique local solution to the
Cauchy problem (1.1)-(1.2) in Xf’b, and furthermore

Iullys < CllTuollyn. (3.6)

Theorem 3.1. Assume 3/8 < s < 1, then the Cauchy problem (1.1)-(1.2) is locally well-posed for ini-
tial data ug € H(R). More precisely, (1.1)-(1.2) possesses a unique solution u satisfying Iu € Xf b S
C([0, 8]; H'(R)), and the mapping ug — u belongs to C(H*(R); Xfyb) C C(H5(R); C([0, 8]; H5(R))), where
1/2 < b < min{(2 + 5)/3, s + 1/8}. Moreover, the lifespan and the solution satisfy (3.3) and (3.6).
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4. Almost conservation law

The goal of this section is to prove the almost conservation law, which indicates that the modified
energy |[Iu(t)|| g1 increases slowly provided that N is large and § is small.

Assume u is the solution to the Cauchy problem (1.1)-(1.2) on [0, §] in the sense of Theorem 3.1.
Acting (1.4) with operator I, and then multiplying with 2(1 — 8)%)Iu and integrating in x, we obtain

§
Hlu(a)”iﬂ — |Huo |2 :f/(l — 82)dx(Tu) (Iu?) dxdt
0

R

8
+2//8x(1u)(1u2)dxdt
R

0
)
+//8x(1u)(1(8xu)2)dxdt. (4.1)
0 R
Noticing that
8
/ /[(1 — 07)0x(Tu) (Tu)? + 3x(Tu) (Tu)* + 3¢ (Iu) (3, Ju)*] dxdt = 0, (4.2)
0 R

we have

R

8
[1u) |2 = ITuoll?, =//(1 — 82)dx(Iw)[Iu? — (Tu)*] dxdt
0

§
+2//8x(1u)[1u2 — (Iu)*]dxdt

R

0
§
+//8x(1u)[1(3xu)2 — (3Ju)*] dxadt. (4.3)
0 R

Inserting (4.2) into (4.1) enables us to take advantage of some internal cancellation.

Theorem 4.1. Assume s < 1, b > max{(1/2)+, 7/8 —s} and u is the solution to the Cauchy problem (1.1)-(1.2)
on [0, 8] in the sense of Theorem 3.1. Then it holds that

[ 1u)|2 = uoli?, | < €83~ N=2~4 1|2, . (4.4)
le

Proof. We estimate the three integrals in (4.3) separately, and denote them in their appearing order

by J1, J2, J3, respectively.
First we estimate Ji. By Plancherel identity, it suffices to show that for all u; € Xg pi=1,2,3,
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/ Im(&1 + &) —m(E1)m(&2)| 1831(€3)
m(§1)m(&2) (§1)(&2)

&1+ +83=0
T1+72+713=0

: |f’1(51’ Tl)Hle(fZ, Tz)\|l:l3(é§3, 13)| dé1 dty d&2 dTy

3
< C8F N4 T o, (45)

where ii; € Xg is an extension of u ;. Without loss of generality, we may assume that flj are nonneg-
ative. For simplicity, we drop the ~ over u; in the following. By symmetry of £; and &>, and noticing
that m(&; + &) — m(&1)m(&,) vanishes when |£1], |£2] < N/2, we restrict the domain of integration to

A={¢1. 1.6 1.8 1) s+6£+8=0, 1+ +13=0, [&] <&, [&2]>N/2}. (46)

In order to estimate the integral, we split the domain of integration A into three regions:

Ar={(&, 11,6, 12,6, 13) € A 61| < &2, 161l < NJ;
={¢1. 11,5, 12,8, 13) € A |&1] < &2, 1&1] > N};

Az ={(51, 71,6, 12,63, 13) € At |&1] ~ |&2]}. (4.7)

We denote the integral in (4.5) restricted to these regions in their appearing order by J11, J12, J13,
respectively.
Since 01 + 03 + 03 = 3&1£,&3, one of the following cases always occurs:

@) lo1] = 1&162831; (b) lo2| = 1£162831; (©) los| > |&16253]. (4.8)

1. Estimate of Ji1. By mean value theorem, there exists 6 € (0, 1), such that
m(& + &) — mEDm(E) =m' (061 + &)1
In the region of Ay, |0&1 + & | ~ |&], thus

Im(&1 + &) —mEmé)|  Im&1 + &) —m(62)]

m(§1)m(&2) B m(&2)
_ Im' @& +&)lE] _ clal (4.9)
m(&2) S gl '

If (a) holds, by Plancherel identity and (2.2), (2.3), (2.6), the integral Ji; restricted to this domain
is dominated by

1&1] 1831¢€3) 1

ol 6 B PRmEp 1) Tkl dn g dn

1-b g, [2-b
/|§1§| |5|§|32|+b (01) i li2013 d&; dry d d
1)1&2
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—2b—1 bn I
<O Pz [DF 2 sl

1

_op—1
<CN Hlutllxg, lluzllx,
3+

lusilx, 5 ,

3
<C84 N2 [T ujlixg,-
j=1
If (b) or (c) holds, the argument is similar to case (a).
2. Estimate of J1,. In the region of Ay, m(&1 + &) ~m(&;), and thus

Im(&1 + &) —mEm(é2)| < max{m(§ +&2), m(&2)}

~

m(&1)m(é2) m(&1)m(§2)
1-s
< ¢ <c<@> ) (4.10)
m(§1) N

If (a) holds, for 2 —b < b+ 5/4, by (2.2), (2.3), (2.6), in this domain the integral ] is bounded by

|sl|>l‘s ElEs) 1 b
AT dé1 dvy déyd
/< N) e Elepee O e dndsdn

Ay

1 |&3]27P

|117b|&5| 1D
2

(01)P 11112 Q13 dy dTy dEr d

1
< CN"4 | o)1y ||L§L% | DXz gy lusllpaps

o
< Il llxo lu21lx,

u
sy, s

3
1_ - _3p_1
<81 NT7a [ llujllxg -
j=1

If (b) or (c) holds, the argument is similar to case (a).
3. Estimate of Jq3. In the region of A3, we have

Im(& + &) — mEDME)| <C<@)”<@>H (411)
m(Em(&) SN N ‘ :

If (a) holds, for 2 —b < 2(s +b) + 1/4, we bound the integral J;3 restricted to this domain by

1] H(w)“ &) 1 b
¢ N N d&dtidérd
/( N) V) e EPEpEp Y e

Az

< CN26-1) |&3]1 P (&3)

&1+ [s D
As

(01)P 1111213 &y dTy d&r d

1
<CONTP74 (00) i [ 2,2 | D 2 gz sl g
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_3p—1
SCENTT A unllxgp luzllx o lluslixg

5
3 12t

3
< C8 4N T lujilxg,-
j=1
If (b) or (c) holds, the argument is similar to case (a). Therefore we obtain
1

1  _9p_
|J1] < Csa~N~% 4||1u||§ng.

The estimate of J, can be obtained similarly as for J1, so we only present the result and omit the
details

1_\—2p-2 3
[J21 < C84™N 4”’””x§b'

Next we estimate J3. By Plancherel identity, it suffices to show that for all u; € Xg be j=1,2,3,

/ Im(&1 + &) —mEpm(&)] 1£111521183]
m(&1)m(&2) (E1)(62)(&3)

E1+&2+8=0
T1+12+13=0

. |l:l1(51, 1’1)Hl:l2(52, 1’2)Hl:l3(53, 13)| dé1 dty d&2 dTy

3
< C8a N4 T jlxo,. (412)
j=1

where iij € Xp  is an extension of u;. We may again assume that ﬁj are nonnegative. For simplicity,
we drop the ~ over u; in the following. Similarly, we restrict the domain of integration to A defined
in (4.6) and split it into three regions A1, A, A3 defined in (4.7). We denote the integral in (4.12)
restricted to these regions in their appearing order by J31, J32, J33, respectively.

1. Estimate of J31. If the case (a) in (4.8) holds, noticing (4.9) and by Plancherel identity and (2.2),
(2.3), (2.6), we bound the integral J3; restricted to this domain by

1&1] 1€1]1821183] 1
F |&2] (61)(82) (§3) 1611P|&21P1&3 P

(01)P 1 ll26l3 d&p dTy d&y dTo

|&|2-P e~
gC/—(a)uuudEdrdsdt

J (@l e R
1

1
g CN_3b_3T “ <U1>bﬁ1 ”Lgl_% || D)? uz ”L;lL? ||u3||]_)‘}L§3

-3b—1
<CN ||u1leo_,,IqullxoyulluallxOiz+

3

—

3
1 _3p_1
<81 NTP7a [ llujllxg -
j=1

If (b) or (c) holds, the argument is similar to case (a).
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2. Estimate of J3;. If (a) holds, noticing (4.10), we bound the integral J3; restricted to this domain
by

|s1|> £ 1162163 1
C RLa} dé1dt1dérd
Af( V) e EpmpEp o ik d dn dadn
o1 [ &S0

&2 lE3 P

(o)l fiofi3 gy dy dEp dTy

1
<N (o) iy 202 1D 2| g2 sl
1 1 3
<83 N4 [ [ llujlix,,-

If (b) or (c) holds, the argument is similar to case (a).
3. Estimate of J33. If (a) holds, for 2(1 —s — b) < 1/4 and noticing (4.11), we bound the integral

J33 restricted to this domain by

1] “5(|sz|>“s |£1]1&2 €3] 1 b
C — — dé1dt1dé d
/( N) N ) ) ) EPEpp o it dndsdn

3

1-s—b 1-s—b 1-b
§CN2(5_1)/ il |€(25|3> il (o) i fiz 03 d&; dTy d&p dT

1
<ONT273 o)y 202 [ DX w2 gz sl
1 1 3
<83 N4 T llujllxo,-
j=1

If (b) or (c) holds, the argument is similar to case (a). Therefore we obtain
|J3 < C84 N~ fu]? X,

This completes the proof of Theorem 4.1. O

5. Global well-posedness result

In this section, we prove the global well-posedness for the Cauchy problem of Eq. (1.1), i.e. for any
given T > 1, (1.1)-(1.2) are well-posed on the time interval [0, T].
For given initial data ug € H5(R),

[Huollyr < CIN'S|lugllps. (51)

Theorem 3.1 shows that the solution u exists on [0, §], with

_ 4 1 C[24+s 1
8 ~||Iu0||H1, 5<b<mm{T,s+§} (5.2)
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and
Hullys < C2lluoligr < 2C2[Tuoli g1
By Theorem 4.1, we have
2 2 1 _op_1 3
[1u() |51 < IHuoll% + 384~ N=20=2 (2, [ Tuoll 1)
As long as
1 _op_1 3 2
C384~N~2°74(2Ca [ uoll )™ < 3llHuollz:,

we have

[ Tu®)] 1 < 200l

1471

(5.3)

(5.4)

(5.5)

Thus we may consider the Cauchy problem of Eq. (1.1) with initial time t = § and initial data u($),

and repeat the above process to extend the solution to time t = 2§.

To extend the local solution to the time interval [0, T], we should iterate the process [T8~!] times,

which can be done provided

C38% N~ (2o | Tuo 1) T6 ™" <3 Tuo %,

By (5.1) and (5.2), it suffices

7*_4b+ _ 7—4b
CaT o | 777 N2 74 amm 179
which can be satisfied by choosing N sufficiently large and demanding that

2b 1+7_4b(1 s)<0
4720 -b) =5

8h2 —11b+6

R TS

(5.6)

(5.7)

(5.8)

(5.9)

As the right-hand side of (5.9) achieves its minimum (6+/10 — 17)/4 when b = (14 — 34/10)/8, and

thus s > (64/10 — 17) /4. More precisely, by choosing

1
4+
P BT B = T
= [CaTluoll 5 )] AT =

where y = [(s — (6+/10 — 17)/4) 1]+, from the iteration, we have
sup Hu(t) | s < 20uollyr < 2CN'"5|ug||ns
tel0,

<C uoll Y.

This completes the proof of Theorem 1.1.

(5.10)
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