期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:263
Global gradient estimates for the borderline case of double phase problems with BMO coefficients in nonsmooth domains
Article
Byun, Sun-Sig1,2  Oh, Jehan1 
[1] Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
[2] Seoul Natl Univ, Res Inst Math, Seoul 08826, South Korea
关键词: BMO coefficient;    Calderon-Zygmund estimate;    Double phase problem;    Non-uniformly elliptic equation;    Reifenberg flat domain;   
DOI  :  10.1016/j.jde.2017.03.025
来源: Elsevier
PDF
【 摘 要 】

We consider a double phase problem with BMO coefficient in divergence form on a bounded nonsmooth domain. The problem under consideration is characterized by the fact that both ellipticity and growth switch between a type of polynomial and a type of logarithm according to the position, which describes a feature of strongly anisotropic materials. We obtain the global Calderon-Zygmund type estimates for the distributional solution in the case that the associated nonlinearity has a small BMO and the boundary of the domain is sufficiently flat in the Reifenberg sense. (C) 2017 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2017_03_025.pdf 2074KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次