Advances in Nonlinear Analysis | |
Convergence analysis for double phase obstacle problems with multivalued convection term | |
article | |
Shengda Zeng1  Yunru Bai2  Leszek Gasiński3  Patrick Winkert4  | |
[1] Guangxi Colleges and Universities Key Laboratory of Complex System Optimization and Big Data Processing, Yulin Normal University;Jagiellonian University in Krakow, Faculty of Mathematics and Computer Science;Pedagogical University of Cracow, Department of Mathematics;Technische Universität Berlin, Institut für Mathematik | |
关键词: Double phase problem; multivalued convection term; Kuratowski upper limit; Tychonov fixed point principle; obstacle problem; | |
DOI : 10.1515/anona-2020-0155 | |
学科分类:社会科学、人文和艺术(综合) | |
来源: De Gruyter | |
【 摘 要 】
In the present paper, we introduce a family of the approximating problems corresponding to an elliptic obstacle problem with a double phase phenomena and a multivalued reaction convection term. Denoting by ? the solution set of the obstacle problem and by ? n the solution sets of approximating problems, we prove the following convergence relation ∅ ≠ w-lim supn→ ∞ Sn=s-lim supn→ ∞ Sn⊂ S, $$\begin{array}{} \displaystyle \emptyset\neq w\text{-}\limsup\limits_{n\to\infty}{\mathcal S}_n=s\text{-}\limsup\limits_{n\to\infty}{\mathcal S}_n\subset \mathcal S, \end{array}$$ where w -lim sup n →∞ ? n and s -lim sup n →∞ ? n denote the weak and the strong Kuratowski upper limit of ? n , respectively.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202107200000502ZK.pdf | 418KB | download |