期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:271
Concentration phenomena in a diffusive aggregation model
Article
Biler, Piotr1  Boritchev, Alexandre2  Karch, Grzegorz1  Laurencot, Philippe3 
[1] Uniwersytet Wroclawski, Inst Matemat, Pl Grunwaldzki 2-4, PL-50384 Wroclaw, Poland
[2] Univ Claude Bernard Lyon 1, CNRS UMR 5208, Inst Camille Jordan, F-69622 Villeurbanne, France
[3] Univ Toulouse, CNRS, UMR 5219, Inst Math Toulouse, F-31062 Toulouse 9, France
关键词: Nonlocal drift-diffusion equation;    Small diffusivity;    Concentration of solutions;   
DOI  :  10.1016/j.jde.2020.09.035
来源: Elsevier
PDF
【 摘 要 】

We consider the drift-diffusion equation u(t) - epsilon Delta u + del center dot (u del K * u) = 0 in the whole space with global-in-time bounded solutions. Mass concentration phenomena for radially symmetric solutions of this equation with small diffusivity are studied. (C) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2020_09_035.pdf 294KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次