期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS | 卷:271 |
Concentration phenomena in a diffusive aggregation model | |
Article | |
Biler, Piotr1  Boritchev, Alexandre2  Karch, Grzegorz1  Laurencot, Philippe3  | |
[1] Uniwersytet Wroclawski, Inst Matemat, Pl Grunwaldzki 2-4, PL-50384 Wroclaw, Poland | |
[2] Univ Claude Bernard Lyon 1, CNRS UMR 5208, Inst Camille Jordan, F-69622 Villeurbanne, France | |
[3] Univ Toulouse, CNRS, UMR 5219, Inst Math Toulouse, F-31062 Toulouse 9, France | |
关键词: Nonlocal drift-diffusion equation; Small diffusivity; Concentration of solutions; | |
DOI : 10.1016/j.jde.2020.09.035 | |
来源: Elsevier | |
【 摘 要 】
We consider the drift-diffusion equation u(t) - epsilon Delta u + del center dot (u del K * u) = 0 in the whole space with global-in-time bounded solutions. Mass concentration phenomena for radially symmetric solutions of this equation with small diffusivity are studied. (C) 2020 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jde_2020_09_035.pdf | 294KB | download |