期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:265
Ground state solution for a class of indefinite variational problems with critical growth
Article
Alves, Claudianor O.1  Germano, Geilson F.1 
[1] Univ Fed Campina Grande, Unidade Acad Matemat, BR-58429900 Campina Grande, Pb, Brazil
关键词: Critical growth;    Variational methods;    Elliptic equations;    Indefinite strongly functional;   
DOI  :  10.1016/j.jde.2018.02.039
来源: Elsevier
PDF
【 摘 要 】

In this paper we study the existence of ground state solution for an indefinite variational problem of the type {-Delta u + (V(x) - W(x))u = f(x, u) in R-N, u is an element of H-1 (R-N), (P) where N >= 2, V, W : R-N -> R and f : R-N x R -> R are continuous functions verifying some technical conditions and f possesses a critical growth. Here, we will consider the case where the problem is asymptotically periodic, that is, V is Z(N)-periodic, W goes to 0 at infinity and f is asymptotically periodic. (c) 2018 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2018_02_039.pdf 1356KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次