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Abstract

In this paper we study the existence of ground state solution for an indefinite variational problem of the 
type { −�u + (V (x) − W(x))u = f (x,u) in R

N,

u ∈ H 1(RN),
(P )

where N ≥ 2, V, W : RN → R and f : RN × R → R are continuous functions verifying some technical 
conditions and f possesses a critical growth. Here, we will consider the case where the problem is asymp-
totically periodic, that is, V is ZN -periodic, W goes to 0 at infinity and f is asymptotically periodic.
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1. Introduction

In this paper we study the existence of ground state solution for an indefinite variational 
problem of the type {

−�u + (V (x) − W(x))u = f (x,u), in R
N,

u ∈ H 1(RN),
(P )

where N ≥ 2, V, W : RN → R are continuous functions verifying some technical conditions and 
f has a critical growth. Here, we will consider the case where the problem is asymptotically 
periodic, that is, V is ZN -periodic, W goes to 0 at infinity and f is asymptotically periodic.

In [13], Kryszewski and Szulkin have studied the existence of ground state solution for an 
indefinite variational problem of the type{

−�u + V (x)u = f (x,u), in R
N,

u ∈ H 1(RN),
(P1)

where V :RN →R is a ZN -periodic continuous function such that

0 /∈ σ(−� + V ), the spectrum of − � + V. (V1)

Related to the function f : RN × R → R, they assumed that f is continuous, ZN -periodic in x
with

|f (x, t)| ≤ c(|t |q−1 + |t |p−1), ∀t ∈R and x ∈R
N (h1)

and

0 < αF(x, t) ≤ tf (x, t) ∀t ∈ R, F (x, t) =
t∫

0

f (x, s) ds (h2)

for some c > 0, α > 2 and 2 < q < p < 2∗ where 2∗ = 2N
N−2 if N ≥ 3 and 2∗ = +∞ if N = 2. 

The above hypotheses guarantee that the energy functional associated with (P1) given by

J (u) = 1

2

∫
RN

(|∇u|2 + V (x)|u|2 dx) −
∫
RN

F (x,u)dx, u ∈ H 1(RN),

is well defined and belongs to C1(H 1(RN), R). By (V1), there is an equivalent inner product 
〈 , 〉 in H 1(RN) such that

J (u) = 1

2
‖u+‖2 − 1

2
‖u−‖2 −

∫
N

F (x,u)dx,
R
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where ‖u‖ = √〈u,u〉 and H 1(RN) = E+ ⊕ E− corresponds to the spectral decomposition of 
−� + V with respect to the positive and negative part of the spectrum with u = u+ + u−, where 
u+ ∈ E+ and u− ∈ E−. In order to show the existence of solution for (P1), Kryszewski and 
Szulkin introduced a new and interesting generalized link theorem. In [16], Li and Szulkin have 
improved this generalized link theorem to prove the existence of solution for a class of indefinite 
problem with f being asymptotically linear at infinity.

The link theorems above mentioned have been used in a lot of papers, we would like to cite 
Chabrowski and Szulkin [5], do Ó and Ruf [8], Furtado and Marchi [9], Tang [30,31] and their 
references.

Pankov and Pflüger [21] also have considered the existence of solution for problem (P1) with 
the same conditions considered in [13], however the approach is based on an approximation 
technique of periodic function together with the linking theorem due to Rabinowitz [22]. After, 
Pankov [20] has studied the existence of solution for problems of the type{

−�u + V (x)u = ±f (x,u), in R
N,

u ∈ H 1(RN),
(P2)

by supposing (V1), (h1)–(h2) and employing the same approach explored in [21]. In [20] and 
[21], the existence of ground state solution has been established by supposing that f is C1 and 
there is θ ∈ (0, 1) such that

0 < t−1f (x, t) ≤ θf ′
t (x, t), ∀t �= 0 and x ∈R

N. (h3)

However, in [20], Pankov has found a ground state solution by minimizing the energy func-
tional J on the set

O =
{
u ∈ H 1(RN) \ E− ; J ′(u)u = 0 and J ′(u)v = 0,∀ v ∈ E−}

.

The reader is invited to see that if J is definite strongly, that is, when E− = {0}, the set O is 
exactly the Nehari manifold associated with J . Hereafter, we say that u0 ∈ H 1(RN) is called a 
ground state solution if

J ′(u0) = 0, u0 ∈O and J (u0) = inf
w∈O

J (w).

In [25], Szulkin and Weth have established the existence of ground state solution for problem 
(P1) by completing the study made in [20], in the sense that, they also minimize the energy func-
tion on O, however they have used more weaker conditions on f , for example f is continuous, 
Z

N -periodic in x and satisfies

|f (x, t)| ≤ C(1 + |t |p−1), ∀t ∈R and x ∈ R
N (f1)

for some C > 0 and p ∈ (2, 2∗).

f (x, t) = o(t) uniformly in x as |t | → 0 (f2)

F(x, t)/|t |2 → +∞ uniformly in x as |t | → +∞ (f3)
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and

t �→ f (x, t)/|t | is strictly increasing on R \ {0}. (f4)

The same approach has been used by Zhang, Xu and Zhang [36,37] to study a class of indefi-
nite and asymptotically periodic problem.

After a review bibliography, we have observed that there are few papers involving indefinite 
problem whose the nonlinearity has a critical growth. For example, the critical case for N ≥ 4
was considered in [5], [29] and [37] when f is given by

f (x, t) = g(x, t) + k(x)|t |2∗−2t,

with g : RN ×R → R being a function with subcritical growth and k : RN → R be a continuous 
function satisfying some conditions. For the case N = 2, we know only the paper [8] which 
considered the periodic case with f having an exponential critical growth, namely there is α0 > 0
such that

lim|t |→+∞
|f (t)|
eα|t |2 = 0, ∀α > α0, lim|t |→+∞

|f (t)|
eα|t |2 = +∞, ∀α < α0.

Motivated by ideas found in Szulkin and Weth [25,26] together with the fact that there are 
few papers involving critical growth for N = 2 and N ≥ 3 and indefinite problem, we intend in 
the present paper to study the existence of ground state solution for (P ), with the nonlinearity 
f having critical growth and the problem being asymptotically periodic. Since we will work 
with the dimensions N = 2 and N ≥ 3, we will state our conditions in two blocks, however the 
conditions on V and W are the same for any these dimensions.

The conditions on V and W .

On the functions V and W , we have assumed the following conditions:

(V1) V : RN → R is continuous and ZN -periodic.
(V2) � := sup(σ (−∇ + V ) ∩ (−∞, 0]) < 0 < � := inf(σ (−∇ + V ) ∩ [0, +∞)).
(W1) W : RN → R is continuous and lim|x|→+∞W(x) = 0.

(W2) 0 ≤ W(x) ≤ � = sup
x∈RN

W(x) < �, ∀x ∈R
N .

With relation to the function f , we have assumed the following conditions:

The dimension N ≥ 3:

For this case, we suppose that f is the form

f (x, t) = h(x)|t |q−1t + k(x)|t |2∗−2t

with 1 < q < 2∗ − 1 and
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(C1) h(x) = h0(x) + h∗(x) and k(x) = k0(x) + k∗(x), where h0, h∗, k0, k∗ : RN → R are 
continuous function, h0, k0 are ZN -periodic, lim|x|→+∞h∗(x) = lim|x|→+∞ k∗(x) = 0 and 

h0, h∗, k0, k∗ are nonnegative.
(C2) There is x0 ∈R

N such that

k(x0) = max
x∈RN

k(x) and k(x) − k(x0) = o(|x − x0|2) as x → x0.

(C3) If infx∈RN h(x) = 0, we assume that V (x0) < 0.

The dimension N = 2:

(f1) There exist functions f0, f ∗ :R2 ×R → R such that

f (x, t) = f0(x, t) + f ∗(x, t),

where f0 and f ∗ are continuous functions, f0 is Z2-periodic with respect to x and f ∗ is 
nonnegative.

(f2)
f (x,t)

t
, f0(x,t)

t
→ 0 as t → 0 uniformly with respect to x ∈R

2.

(f3) For each fixed x ∈ R
2, the functions t �→ f (x,t)

t
and t �→ f0(x,t)

t
are increasing on (0, +∞)

and decreasing on (−∞, 0).
(f4) There exist θ, μ > 2 such that

0 < θF0(x, t) ≤ tf0(x, t) and 0 < μF(x, t) ≤ tf (x, t)

for all (x, t) ∈ R
2 ×R

∗, where

F0(x, t) :=
t∫

0

f0(x, s)ds and F(x, t) :=
t∫

0

f (x, s)ds.

(f5) There exist � > 0 and τ ∈ (1, 2) such that |f0(x, t)| ≤ �e4πt2
and |f ∗(x, t)| ≤

�H(x)e4π |t |τ−2t for all (x, t) ∈ R
2 ×R, where H ∈ L2(R2) ∩ L∞(R2).

(f6) F0(x, t) ≥ D(x)|t |q, ∀ (x, t) ∈ R
2 × R, for some positive continuous function D with 

infx∈R2 D(x) > 0 and q > 2.

An example of a function f verifying (f1)–(f6) is

f (x, t) = λ(3 − sen((x1 + x2)2π))|t |q−2teα0t
2 + 1

x2
1 + x2

2 + 1
|t |p−2te4π |t |τ−1t , ∀t ∈R

with x = (x1, x2), λ > 0, α0 ∈ (0, 4π), q, p ∈ (2, +∞) and τ ∈ (1, 2).
The above conditions imply that f has a critical growth if N = 2 or N ≥ 3.
Our main theorem is the following:
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Theorem 1.1. Assume that (V1)–(V2), (W1)–(W2), (C1)–(C3) and (f1)–(f6) hold. Then, prob-
lem (P ) has a ground state solution for N ≥ 4. If N = 2, 3, there is λ∗ > 0 such that if 
infx∈R2 D(x), infx∈RN h(x) ≥ λ∗, then problem (P ) has a ground state solution.

The Theorem 1.1 completes the study made in some of the papers above mentioned, in the 
sense that we are considering others conditions on V and f . For example, for the case N ≥ 3, 
it completes the study made in [25], because the critical case was not considered for N ≥ 3
or N = 2, and the case asymptotically periodic was not also analyzed. The Theorem 1.1 also 
completes [8], because in that paper was proved the existence of a solution only for the periodic 
case, while that we are finding ground state solution for the periodic and asymptotically periodic 
case by using a different method. Finally, the above theorem completes the main result of [29]
and [36], because the authors considered only the case W = 0, and also the paper [5], because 
the dimension N = 3 was not considered as well as the asymptotically periodic case. Moreover, 
in [5] and [29] the authors considered only the case

V (x0) < 0 and k(x) − k(x0) = o(|x − x0|2) as x → x0.

In Theorem 1.1 this condition was not assumed if infx∈RN h(x) > 0.
Before concluding this introduction, we would like point out that the reader can find others 

interesting results involving indefinite variational problem in Jeanjean [12], Schechter [27,28], 
Lin and Tang [17], Willem and Zou [34], Yang [35] and their references.

Notation. In this paper, we use the following notations:

• The usual norms in H 1(RN) and Lp(RN) will be denoted by ‖ ‖H 1(RN) and | |p respec-
tively.

• C denotes (possible different) any positive constant.
• BR(z) denotes the open ball with center z and radius R in RN .
• We say that un → u in Lp

loc(R
N) when

un → u in Lp(BR(0)), ∀R > 0.

• If g is a mensurable function, the integral 
∫
RN g(x) dx will be denoted by 

∫
g(x) dx.

The plan of the paper is as follows: In Section 2 we will show some technical lemmas and 
prove the Theorem 1.1 for N ≥ 3, while in Section 3 we will focus our attention to the dimension 
N = 2.

2. The case N ≥ 3

In this section, our intention is to prove the Theorem 1.1 for the case N ≥ 3. Some technical 
lemmas in this section are also true for dimension N = 2 and they will be used in Section 3.

In this section, our focus is the indefinite problem{
−�u + (V (x) − W(x))u = h(x)|u|q−1u + k(x)|u|2∗−2u, in R

N

u ∈ H 1(RN),
(2.1)
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whose energy functional �W : H 1(RN) → R given by

�W(u) = 1

2
B(u,u) − 1

2

∫
W(x)|u|2dx − 1

q + 1

∫
h(x)|u|q+1dx − 1

2∗

∫
k(x)|u|2∗

dx (2.2)

is well defined, �W ∈ C1(H 1(RN), R) and its critical points are precisely weak solutions 
of (2.1). Here, B is the bilinear form

B(u, v) =
∫

(∇u∇v + V (x)uv)dx. (2.3)

Note that the bilinear form B is not positive definite, therefore it does not induce a norm. As in 
[25], there is an inner product 〈 , 〉 in H 1(RN) such that

�W(u) = 1

2
‖u+‖2 − 1

2
‖u−‖2 − 1

2

∫
W(x)|u|2 dx −

∫
F(x,u)dx, (2.4)

where ‖u‖ = √〈u,u〉 and H 1(RN) = E+ ⊕ E− corresponds to the spectral decomposition of 
−� + V with respect to the positive and negative part of the spectrum with u = u+ + u−, where 
u+ ∈ E+ and u− ∈ E−. It is well known that B is positive definite on E+, B is negative definite 
on E− and the norm ‖ ‖ is an equivalent norm to the usual norm in H 1(RN), that is, there are 
a, b > 0 such that

b||u|| ≤ ||u||H 1(RN) ≤ a||u||, ∀ u ∈ H 1(RN). (2.5)

Hereafter, we denote by � : H 1(RN) → R the functional defined by

�(u) = 1

2
B(u,u) − 1

q + 1

∫
h0(x)|u|q+1dx − 1

2∗

∫
k0(x)|u|2∗

dx,

or equivalently,

�(u) = 1

2
‖u+‖2 − 1

2
‖u−‖2 − 1

q + 1

∫
h0(x)|u|q+1dx − 1

2∗

∫
k0(x)|u|2∗

dx. (2.6)

Note that the critical points of � are weak solutions of the periodic problem{
−�u + V (x)u = h0(x)|u|q−1u + k0(x)|u|2∗−2u, in R

N,

u ∈ H 1(RN).
(2.7)

In the sequel, M, E(u) and Ê(u) denote the following sets

M := {u ∈ H 1(RN) \ E− ; �′
W(u)u = 0 and �′

W(u)v = 0,∀ v ∈ E−}

and

E(u) := E− ⊕Ru and Ê(u) := E− ⊕ [0,+∞)u.
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Therefore

E(u) = E− ⊕Ru+ and Ê(u) = E− ⊕ [0,+∞)u+.

Moreover, we denote by γW and γ the real numbers

γW := inf
M

�W and γ := inf
M

�. (2.8)

2.1. Technical lemmas

In this section we are going to show some lemmas which will be used in the proof of main 
Theorem 1.1.

Lemma 2.1. If u ∈M and w = su + v where s ≥ 1, v ∈ E− and w �= 0, then

�W(u + w) < �W(u).

Proof. In the sequel, we fix

G(x, t) := 1

2
W(x)t2 + 1

q + 1
h(x)|t |q+1 + 1

2∗ k(x)|t |2∗

and

g(x, t) := W(x)t + h(x)|t |q−1t + k(x)|t |2∗−2t.

Then by a simple computation,

�W(u + w) − �W(u) =

−1

2
||v||2 +

∫ (
g(x,u)

[(
s2

2
+ s

)
u + (s + 1)v

]
G(x,u) − G(x,u + w)

)
dx.

Now, the proof follows by adapting the ideas explored in [25, Proposition 2.3]. �
Lemma 2.2. Let K ⊂ E+ \ {0} be a compact subset, then there exists R > 0 such that 
�W(w) ≤ 0, ∀ w ∈ E(u) \ BR(0) and u ∈K.

Proof. Setting the functional

�∗(u) = 1

2
B(u,u) − 1

2∗

∫
|u|2∗

dx

we have

�W(u) ≤ �∗(u), ∀u ∈ H 1(RN).

Now, we apply the same idea from [25, Lemma 2.2] to the functional �∗ to get the desired 
result. �
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Lemma 2.3. For all u ∈ H 1(RN), the functional �W |E(u) is weakly upper semicontinuous.

Proof. First of all, note that E(u) is weakly closed, because it is convex strongly closed. Now, 
we claim that the functional

�̃ : E(u) → R

w �→ 1

2

∫
W(x)|w|2 dx + 1

q + 1

∫
h(x)|w|q+1 dx + 1

2∗

∫
k(x)|w|2∗

dx

is weakly lower semicontinuous. Indeed, if wn ⇀ w on E(u), passing to a subsequence, we can 
assume that wn(x) → w(x) a.e. in RN . Then by Fatou’s Lemma,

�̃(w) =
∫

W(x)w2 dx + 1

q + 1

∫
h(x)|w|q+1 dx + 1

2∗

∫
k(x)|w|2∗

dx ≤

≤ lim inf
n→+∞

[∫
W(x)w2

n dx + 1

q + 1

∫
h(x)|wn|q+1 dx + 1

2∗

∫
k(x)|wn|2∗

dx

]
,

leading to

�̃(w) ≤ lim inf
n→+∞ �̃(wn).

Furthermore, the functional

�̃ : E(u) → R

w �→ 1

2
B(w,w)

is weakly upper semicontinuous. In fact, since

�̃(w) = 1

2
(||w+||2 − ||w−||2),

if wn = snu
+ + vn ⇀ w = su+ + v with vn, v ∈ E−, then sn → s in R and vn ⇀ v in H 1(RN). 

Thus,

�̃(w) = 1

2
(s2||u+||2 − ||v||2) ≥ lim sup

n→+∞
1

2
(s2

n||u+||2 − ||vn||2) = lim sup
n→+∞

�̃(wn).

As �W |E(u) = �̃ − �̃, the result is proved. �
Lemma 2.4. For each u ∈ H 1(RN) \ E−, M ∩ Ê(u) is a singleton set and the element of this 
set is the unique global maximum of �W |

Ê(u)
.

Proof. The proof follows very closely the proof of [25, Lemma 2.6]. �
Lemma 2.5. There exists ρ > 0 such that inf

B (0)∩E+ �W > 0.

ρ
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Proof. In what follows, let us fix h := supx∈RN h(x) and k := supx∈RN k(x). For u ∈ E+,

�W(u) = 1

2
||u||2 − 1

2

∫
W(x)|u|2dx − 1

q + 1

∫
h(x)|u|q+1dx − 1

2∗

∫
k(x)|u|2∗

dx

≥ 1

2
||u||2 − �

2

∫
|u|2dx − h

q + 1

∫
|u|q+1dx − k

2∗

∫
|u|2∗

dx

≥ 1

2
||u||2 − �

2�
||u||2 − hc1

q + 1
||u||q+1 − kc2

2∗ ||u||2∗

= 1

2

(
1 − �

�

)
||u||2 − hc1

q + 1
||u||q+1 − kc2

2∗ ||u||2∗
.

Thereby, the lemma follows by taking ρ > 0 satisfying

1

2

(
1 − �

�

)
ρ2 − hc1

q + 1
ρq+1 − kc2

2∗ ρ2∗
> 0. �

Lemma 2.6. The real number γW given in (2.8) is positive. In addition, if u ∈ M then ||u+|| ≥
max{||u−||, √2γW }.

Proof. By Lemma 2.5, there is ρ > 0 such that

l := inf
Bρ(0)∩E+ �W > 0.

For all u ∈M, we know that u+ �= 0, then by Lemma 2.4,

�W(u) ≥ �W

(
ρ

||u+||u
+
)

≥ l,

from where it follows that

γW = inf
M

�W ≥ l > 0.

In addition, for all u ∈M,

γW ≤ �W(u) ≤ 1

2
B(u,u) = 1

2
(||u+||2 − ||u−||2),

implying that ||u+|| ≥ max{||u−||, √2γW }. �
Next we will show a boundedness from above for γW which will be crucial in our approach. 

However, before doing this we need to prove two technical lemmas. The first one is true for 
N ≥ 2 and it has the following statement
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Lemma 2.7. Consider N ≥ 2 and let u ∈ E+ \ {0}, p ∈ (2, 2∗) and r, s0 > 0. Then there exists 
ξ > 0 such that

ξ |su|p ≤ |su + v|p, (2.9)

for all s ≥ s0 and v ∈ E− with ||su + v|| ≤ r .

Proof. If the lemma does not hold, there are sn ≥ s0 and vn ∈ E− satisfying

||snu + vn|| ≤ r and |snu|p ≥ n|snu + vn|p, ∀n ∈N.

Setting αn := |snu|p , we obtain ∣∣∣∣ u

|u|p + vn

αn

∣∣∣∣
p

≤ 1

n
.

Thus, passing to a subsequence if necessary,

wn := vn

αn

→ − u

|u|p

a.e. in R
N. (2.10)

On the other hand,

||wn||2 = ||vn||2
s2
n|u|2p

≤ ||snu + vn||2
s2

0 |u|2p
≤ r2

s2
0 |u|2p

∀n ∈N,

showing that (wn) is a bounded sequence in H 1(RN). As wn ∈ E−, there is w ∈ E− such that 
for some subsequence (not renamed) wn⇀w in E−. Then by (2.10),

u

|u|p

= −w ∈ E−,

which is absurd, since u ∈ E+ \ {0}. �
Lemma 2.8. Let u ∈ E+ \ {0} be fixed. Then there are r, s0 > 0 satisfying

sup
w∈Ê(u)

�W(w) = sup
||su + v|| ≤ r

s ≥ s0, v ∈ E−

�W(su + v). (2.11)

Proof. From Lemma 2.2,

sup
Ê(u)

�W = sup
Ê(u)∩Br(0)

�W

for some r > 0. Hence, there are (sn) ⊂ [0, +∞) and (vn) ⊂ E− with ||snu + vn|| ≤ r and

�W(snu + vn) → sup̂ �W. (2.12)

E(u)∩Br(0)
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Next, we will prove that there exists s0 > 0 such that

sup
Ê(u)∩Br(0)

�W = sup
||su + v|| ≤ r

s ≥ s0, v ∈ E−

�W(su + v).

Arguing by contradiction, suppose that for all s0 > 0

sup
Ê(u)∩Br(0)

�W > sup
||su + v|| ≤ r

s ≥ s0, v ∈ E−

�W(su + v). (2.13)

Such supposition permit us to conclude that sn → 0. On the other hand, recalling that

�W(snu + vn) ≤ 1

2
s2
n||u||2,

we are leading to

0 < γW = inf
M

�W ≤ sup
Ê(u)

�W = �W(snu + vn) + on(1) ≤ 1

2
s2
n||u||2 + on(1),

which is a contradiction. This completes the proof. �
Now, we are ready to show the estimate from above involving the number γW given in (2.8)

Proposition 2.9. Assume the conditions of Theorem 1.1. If N ≥ 4, then

γW <
1

N |k0|
N−2

2∞
SN/2. (2.14)

If N = 3, there is λ∗ > 0 such that the estimate (2.14) holds for inf
x∈RN

h(x) > λ∗.

Proof. Since γW ≤ γ , it is enough to prove that

γ <
1

N |k0|
N−2

2∞
SN/2.

If N ≥ 4 and infx∈RN h(x) = 0, the estimate is made in [5, Proposition 4.2]. Next we will do the 
proof for N ≥ 4 and infx∈RN h(x) > 0. To this end, we follow the same notation used in [5]. Let

ϕε(x) = cNψ(x)ε
N−2

2

(ε2 + |x|2)N−2
2

where cN = (N(N − 2))
N−2

4 , ε > 0, and ψ ∈ C∞(RN) is such that
0
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ψ(x) = 1 for |x| ≤ 1

2
and ψ(x) = 0 for |x| ≥ 1.

From [33], we know that the estimates below hold

|∇ϕε |22 = S
N
2 + O(εN−2), |∇ϕε |1 = O(ε

N−2
2 ), |ϕε |2∗

2∗ = S
N
2 + O(εN),

|ϕε |2∗−1
2∗−1 = O(ε

N−2
2 ), |ϕε |qq = O(ε

N−2
2 ), |ϕε |1 = O(ε

N−2
2 )

(2.15)

and

|ϕε |22 =
{

bε2|logε| + O(ε2), if N = 4

bε2 + O(εN−2), if N ≥ 5.
(2.16)

Adapting the same idea explored in [5, Proposition 4.2], for each u ∈ E− we obtain

�(sϕε + u) ≤ �(sϕε) + O(εN−2), ∀s ≥ 0,

where O(εN−2) does not depend on u. Now, arguing as in [1], we get

sup
s≥0

�(sϕε) ≤ 1

N |k0|
N−2

2∞
SN/2 + O(εN−2) + c1

∫
B1(0)

|ϕε |2 dx − c2

∫
B1(0)

|ϕε |q+1 dx,

implying that

sup
s≥0, u∈E−

�(sϕε + u) ≤ 1

N |k0|
N−2

2∞
SN/2 + c1

∫
B1(0)

|ϕε |2 dx − c2

∫
B1(0)

|ϕε |q+1 dx + O(εN−2).

Moreover, in [1], we also find that

lim
ε→0

1

εN−2

⎛⎜⎝c1

∫
B1(0)

|ϕε |2 dx − c2

∫
B1(0)

|ϕε |q+1 dx

⎞⎟⎠ = −∞,

from where it follows that there exists ε > 0 small enough verifying

c1

∫
B1(0)

|ϕε |2 dx − c2

∫
B1(0)

|ϕε |q+1 dx + O(εN−2) < 0,

and so,

sup
s≥0, u∈E−

�(sϕε + u) <
1

N |k0|
N−2

2∞
SN/2

for some ε > 0 small enough.
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Now, we will consider the case N = 3. For each u ∈ E+ \ {0}, the Lemma 2.8 guarantees the 
existence of r, s0 > 0 satisfying

sup
w∈Ê(u)

�(w) = sup
||su + v|| ≤ r

s ≥ s0, v ∈ E−

�(su + v).

Therefore, applying Lemma 2.7,

sup
Ê(u)

� = sup
||su + v|| ≤ r

s ≥ s0, v ∈ E−

�(su + v)

≤ sup
||su + v|| ≤ r

s ≥ s0, v ∈ E−

(
s2||u||2

2
− λ

q + 1

∫
|su + v|q+1dx

)

≤ sup
||su + v|| ≤ r

s ≥ s0, v ∈ E−

(
s2||u||2

2
− λξ

q + 1

∫
|su|q+1dx

)

≤ max
s≥0

(As2 − λBsq+1),

where

λ = inf
x∈RN

h(x), A = ||u||2
2

and B = ξ

q + 1

∫
|u|q+1dx.

As

max
s≥0

(As2 − λBsq+1) → 0 as λ → +∞,

there is λ∗ > 0 such that

sup
w∈Ê(u)

�(w) <
1

N |k0|
N−2

2∞
SN/2 ∀λ ≥ λ∗,

showing the desired result. �
Lemma 2.10. Let (un) ⊂ H 1(RN) be a sequence verifying

�W(un) ≤ d, ±�′
W(un)u

±
n ≤ d||un|| and − �′

W(un)un ≤ d||un||

for some d > 0. Then, (un) is bounded in H 1(RN).

Proof. In the sequel, let θ := χ[−1,1] : R →R be the characteristic function on interval [−1, 1],

g(x, t) := θ(t)f (x, t) and j (x, t) := (1 − θ(t))f (x, t),
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where f (x, t) = h(x)|t |q−1t + k(x)|t |2∗−2t . Fixing

r := q + 1

q
and s = 2∗

2∗ − 1
,

it follows that

(r − 1)q = (s − 1)(2∗ − 1) = 1.

Note that

|g(x, t)|r−1 = θ(t)r−1|f (x, t)|r−1 ≤ θ(t)(|h|∞|t |q + |k|∞|t |2∗−1)r−1

≤ θ(t)2r−1C(|t |(r−1)q + |t |(r−1)(2∗−1)) ≤ K|t |
for some C > 0 sufficiently large. So

|g(x, t)|r−1 ≤ C|t |,∀ (x, t) ∈ R
N+1. (2.17)

Analogously,

|j (x, t)|s−1 ≤ C|t |,∀ (x, t) ∈ R
N+1. (2.18)

Since tf (x, t) ≥ 0, (x, t) ∈ R
N+1, the inequalities (2.17) and (2.18) give

|g(x, t)|r ≤ Ctg(x, t) and |j (x, t)|s ≤ Ctj (x, t), ∀(x, t) ∈R
N+1. (2.19)

The last two inequalities lead to

d + d||un|| ≥ �W(un) − 1

2
�′

W(un)un =(
1

2
− 1

q + 1

)∫
h(x)|u|q+1dx +

(
1

2
− 1

2∗

)∫
k(x)|u|2∗

dx ≥(
1

2
− 1

q + 1

)∫
h(x)|u|q+1dx +

(
1

2
− 1

q + 1

)∫
k(x)|u|2∗

dx =(
1

2
− 1

q + 1

)∫
(g(x,un)un + j (x,un)un)dx ≥(

1

2
− 1

q + 1

)
1

C

(∫
|g(x,un)|rdx +

∫
|j (x,un)|sdx

)
,

from where it follows

|g(x,un)|rr + |j (x,un)|ss ≤ C(1 + ||un||) (2.20)

for some C > 0. On the other hand,
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||u−
n ||2 = −�′

W(un)u
−
n −

∫
W(x)unu

−
n dx −

∫
f (x,un)u

−
n dx

≤ d||u−
n || −

∫
W(x)unu

−
n dx + |g(x,un)|r |u−

n |q+1 + |j (x,un)|s |u−
n |2∗

≤ −
∫

W(x)unu
−
n dx + C||u−

n || (1 + |g(x,un)|r + |j (x,un)|s)

≤ −
∫

W(x)unu
−
n dx + C||u−

n ||
(

1 + (1 + ||un||)1/r + (1 + ||un||)1/s
)

≤ −
∫

W(x)unu
−
n dx + C||u−

n ||
(

1 + ||un||1/r + ||un||1/s
)

.

Thus,

||u−
n ||2 ≤ −

∫
W(x)unu

−
n dx + C||un||

(
1 + ||un||1/r + ||un||1/s

)
. (2.21)

The same argument works to prove that

||u+
n ||2 ≤

∫
W(x)unu

+
n dx + C||un||

(
1 + ||un||1/r + ||un||1/s

)
. (2.22)

Recalling that ||un||2 = ||u+
n ||2 + ||u−

n ||2, the estimates (2.21) and (2.22) combined give

||un||2 ≤
∫

W(x)un(u
+
n − u−

n )dx + C||un||
(

1 + ||un||1/r + ||un||1/s
)

. (2.23)

On the other hand, we know that

∫
W(x)un(u

+
n − u−

n )dx =
∫

W(x)(u+
n + u−

n )(u+
n − u−

n )dx

=
∫

W(x)(u+
n )2dx −

∫
W(x)(u−

n )2dx

≤
∫

W(x)(u+
n )2dx ≤ �

∫
(u+

n )2dx ≤ �

�
||u+

n ||2

that is, ∫
W(x)un(u

+
n − u−

n )dx ≤ �

�
||un||2, (2.24)

where � was fixed in (W2). Now, (2.23) combines with (2.24) to give(
1 − �

�

)
||un||2 ≤ C||un||

(
1 + ||un||1/r + ||un||1/s

)
.

This concludes the verification of Lemma 2.10. �
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As a byproduct of the last lemma, we have the corollaries below

Corollary 2.11. If (un) is a (PS) sequence for �W , then (un) is bounded. In addition, if un ⇀ u

in H 1(RN), then u is a solution of (2.1).

Corollary 2.12. �W is coercive on M, that is, �W(u) → +∞ as ||u|| → +∞ and u ∈M.

The Lemma 2.4 permits to consider a function

m : E+ \ {0} →M where m(u) ∈ Ê(u) ∩M, ∀u ∈ E+ \ {0}. (2.25)

The above function will be crucial in our approach. Next, we establish its continuity.

Lemma 2.13. The function m is continuous.

Proof. Suppose un → u in E+ \ {0}. Since

un

||un|| → u

||u|| , m

(
un

||un||
)

= m(un) and m

(
u

||u||
)

= m(u),

without loss of generality, we may assume that ||un|| = ||u|| = 1.
There are tn, t ∈ [0, +∞) and vn, v ∈ E− such that

m(un) = tnun + vn and m(u) = tu + v.

Note that K := {un}n∈N ∪ {u} is a compact set. Thereby, by Lemma 2.2, there exists R > 0 such 
that �W(w) ≤ 0 in E(z) \ BR(0) for all z ∈ K . Hence,

0 < �W(m(un)) = sup
Ê(un)

�W = sup
Ê(un)∩BR(0)

�W ≤ sup
w∈Ê(un)∩BR(0)

1

2
||w+||2 ≤ 1

2
R2,

showing that (�W(m(un))) is a bounded sequence, and so, by Corollary 2.12, (m(un)) is a 
bounded sequence. The boundedness of (m(un)) implies that (tn) and (vn) are also bounded. 
Then, for some subsequence (not renamed),

tn → t0 in R, vn ⇀ v0 in E− and m(un) ⇀ t0u + v0 in E−. (2.26)

Recalling that �W(m(un)) ≥ �W(tun + v), we obtain

lim inf
n→+∞�W(m(un)) ≥ �W(m(u)).

Thus, the Fatou’s Lemma combined with the weakly lower semicontinuous of the norm gives
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�W(m(u)) ≤ lim inf
n→+∞�W(m(un)) ≤ lim sup

n→+∞
�W(m(un))

lim sup
n→+∞

[
1

2
t2
n ||un||2 − 1

2
||vn||2 − 1

2

∫
W(x)m(un)

2dx

− 1

q + 1

∫
h(x)|m(un)|q+1dx − 1

2∗

∫
k(x)|m(un)|2∗

dx

]
≤ 1

2
t2
0 − 1

2
||v0||2 − 1

2

∫
W(x)|t0u + v0|2dx

− 1

q + 1

∫
h(x)|t0u + v0|q+1dx − 1

2∗

∫
k(x)|t0u + v0|2∗

dx

= �W(t0u + v0) ≤ �W(m(u)),

implying that

lim
n→+∞||vn|| = ||v0|| and �W(t0u + v0) = �W(m(u)). (2.27)

From (2.26) and (2.27), vn → v0 in E−. Now, the Lemma 2.1 together with (2.27) guarantees 
that t0u + v0 = m(u). Consequently,

m(un) = tnun + vn → t0u + v0 = m(u),

finishing the proof. �
Hereafter, we consider the functional �̂ : E+ \ {0} → R defined by �̂(u) := �W(m(u)). We 

know that �̂ is continuous by previous lemma. In the sequel, we denote by � : S+ → R the 
restriction of �̂ to S+ = B1(0) ∩ E+.

The next three results establish some important properties involving the functionals � and �̂
and their proofs follow as in [25].

Lemma 2.14. �̂ ∈ C1(E+ \ {0}, R), and

�̂′(y)z = ||m(y)+||
||y|| �′

W(m(y))z, ∀y, z ∈ E+, y �= 0. (2.28)

Corollary 2.15. The following assertions hold:

(a) � ∈ C1(S+), and

�′(y)z = ||m(y)+||�′
W(m(y))z, for z ∈ TyS

+.

(b) (wn) is a (PS)c sequence for � if and only if (m(wn)) is a (PS)c sequence for �W .
(c) If γW = infM �W is attained by u ∈M, then �′

W(u) = 0.

Proposition 2.16. There exists a (PS)γ sequence for �W .

W
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Our next lemma will be used to prove the existence of ground state solution for the periodic 
case.

Lemma 2.17. Let (un) be a (PS)c sequence for functional � given in (2.6) with c �= 0. Then, 
there are r, ε > 0 and (yn) in ZN satisfying

lim sup
n∈N

∫
Br (yn)

|un|2∗
dx ≥ ε. (2.29)

In addition, if c ∈ (−∞, SN/2|k0|
2−N

2∞ /N) \ {0}, the sequence vn = un(· − yn) is also a (PS)c
sequence for �, and for some subsequence, vn ⇀ v in H 1(RN) with v �= 0.

Proof. By Corollary 2.11, the sequence (un) is bounded in H 1(RN). Arguing by contradiction, 
we suppose that

lim sup
n→+∞

sup
y∈RN

∫
BR(y)

|un|2∗
dx = 0,

for some R > 0. Applying [23, Lemma 2.1], it follows that un → 0 in L2∗
(RN), and so, by 

interpolation on the Lebesgue spaces, un → 0 in Lp(RN) for all p ∈ (2, 2∗]. As

�′(un)(u
−
n ) = −||u−

n ||2 −
∫

h0(x)|un|q−1unu
−
n dx −

∫
k0(x)|un|2∗−2unu

−
n dx,

we deduce that u−
n → 0 in H 1(RN). By a similar argument u+

n → 0 in H 1(RN). Hence

un → 0 in H 1(RN).

Thereby, by continuity of �, c = lim�(un) = �(0) = 0, which is absurd. Thus, there are 
(zn) ⊂ R

N and η > 0 satisfying ∫
BR(zn)

|u+
n |2∗

dx ≥ η > 0, ∀n ∈ N.

Recalling that for each n ∈N there is yn ∈ Z
N such that

BR(zn) ⊂ BR+√
N(yn),

we have ∫
B

R+√
N

(yn)

|u+
n |2∗

dx ≥ η > 0, ∀n ∈ N,

finishing the proof of (2.29).
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Now, assume c ∈ (−∞, SN/2|k0|
2−N

2∞ /N) \ {0} and set vn := un(· − yn). By a simple compu-
tation, we see that (vn) is also a (PS)c sequence for � with

lim sup
n→+∞

∫
Br(0)

|v+
n |2∗

dx ≥ ε. (2.30)

By Corollary 2.12, (vn) is bounded, and so, for some subsequence (still denoted by (vn)), vn ⇀ v

in H 1(RN) for some v ∈ H 1(RN). Suppose by contradiction v = 0 and assume that

|∇vn|2 ⇀ μ and |vn|2∗
dx ⇀ ν in M+(RN). (2.31)

By Concentration-Compactness Principle II due to Lions [15], there exist a countable set J , 
(xj )j∈J ⊂R

N and (μj )j∈J , (νj )j∈J ⊂ [0, +∞) such that

ν =
∑
j∈J

νj δxj
μ ≥

∑
j∈J

μjδxj
with μj ≥ Sν

2
2∗
j . (2.32)

Now, our goal is to show that νj = 0 for all j ∈ J . First of all, note that

c = lim
n→+∞

[
�(vn) − 1

2
�′(vn)vn

]
≥ 1

N

∑
j∈J

k0(xj )νj . (2.33)

On the other hand, setting ψε(x) := ψ((x − xj )/ε), ∀ x ∈ R
N, ∀ ε > 0, where ψ ∈ C∞

c (RN)

is such that ψ ≡ 1 in B1(0), ψ ≡ 0 in RN \ B2(0) and |∇ψ | ≤ 2, with 0 ≤ ψ ≤ 1, we have that 
ψεvn ∈ H 1(RN) and (ψεvn) is bounded in H 1(RN). So

�′(vn)(ψεvn) → 0

or equivalently∫
∇vn∇(ψεvn) dx +

∫
V (x)ψεv

2
n dx −

∫
h0(x)ψε |vn|q+1dx −

∫
k0(x)|vn|2∗

ψεdx → 0.

By using the definition of ν and μ together with the last limit, we derive∫
∇v(∇ψε)v dx +

∫
V (x)ψεv

2 dx −
∫

h0(x)ψε |v|q+1dx +
∫

ψεdμ −
∫

k0ψεdν = 0.

Now, taking the limit ε → 0, we find

μ(xj ) = k0(xj )νj .

By (2.32), μj ≤ μ(xj ). Then,

Sν
2/(2∗) = μj ≤ μ(xj ) = k0(xj )νj .
j
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If νj �= 0, the last inequality gives

νj ≥ SN/2

|k0|
N−2

2∞
. (2.34)

Thereby, by (2.33) and (2.34), if there exists j ∈ J such that νj �= 0, we would have

c ≥ SN/2

N |k0|
N−2

2∞

which is absurd. Hence νj = 0 for all j ∈ J , so ν ≡ 0, and by (2.31), |vn|2∗
⇀ 0 in M+(RN). 

Consequently vn → 0 in L2∗
loc(R

N) which contradicts (2.30), showing that v �= 0. �
2.2. Proof of Theorem 1.1: the case N ≥ 3

The proof will be divided into two cases, more precisely, the Periodic Case and the Asymp-
totically Periodic Case.

1- The periodic case:

Proof. From Proposition 2.16, there exists a (PS)γ sequence (un) for �, where γ was given 
in (2.8). By Lemma 2.17, passing to a subsequence if necessary, un ⇀ u �= 0 and u ∈ H 1(RN) is 
a solution of problem (2.7), and so, �(u) ≥ γ . On the other hand

γ = lim
n→+∞

[
�(un) − 1

2
�′(un)(un)

]
= lim inf

n→+∞

[(
1

2
− 1

q + 1

)∫
h(x)|un|q+1dx +

(
1

2
− 1

2∗

)∫
k(x)|un|2∗

dx

]
≥

[(
1

2
− 1

q + 1

)∫
h(x)|u|q+1dx +

(
1

2
− 1

2∗

)∫
k(x)|u|2∗

dx

]
= �(u) − 1

2
�′(u)u = �(u).

From this, u ∈ H 1(RN) is a ground state solution for the problem (2.7). �
2- Asymptotically periodic case:

Proof. From definition of �W and �, we have the inequality

γW ≤ γ.

Next, our analysis will be divide into two cases, more precisely, γW = γ and γW < γ .
Assume firstly γW = γ . Let u ∈ H 1(RN) be a ground state solution of (2.7) for the periodic 

case and v ∈ Ê(u) such that
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�W(v) = sup
Ê(u)

�W .

Then,

γW ≤ �W(v) ≤ �(v) ≤ �(u) = γ = γW ,

implying that �W(v) = γW with v ∈ M. By Corollary 2.15, part (c), we deduce that v is a ground 
state solution of (2.1).

Now, assume γW < γ and let (un) be a (PS)γW
sequence for �W given by Proposition 2.16. 

By Lemma 2.10, (un) is a bounded sequence, then for some subsequence (still denoted by (un)) 
un ⇀ u in H 1(RN). We claim that u �= 0. Indeed, if u = 0 it is easy to see that∫

W(x)u2
ndx → 0 and sup

‖ψ‖≤1

∣∣∣∣∫ W(x)unψdx

∣∣∣∣ → 0.

In addiction, by (C1), we also have∫
h∗(x)|un|q+1dx → 0 and sup

‖ψ‖≤1

∣∣∣∣∫ h∗(x)|un|q−1uψdx

∣∣∣∣ → 0.

Arguing as in Lemma 2.17, we derive that un → 0 in L2∗
loc(R

N), and so,

∫
k∗(x)|un|2∗

dx → 0 and sup
‖ψ‖≤1

∣∣∣∣∫ k∗(x)|un|2∗−2unψdx

∣∣∣∣ → 0.

Hence

�W(un) → γW and ||�′
W(un)|| → 0,

that is, (un) is a (PS)γW
sequence for �W . By Proposition 2.9,

γW <
SN/2

N |k0|
N−2

2∞
.

Then, Proposition 2.17 guarantees the existence of (yn) ⊂ Z
N such that vn := un(· −yn) ⇀ v �= 0

in H 1(RN) and �′(v) = 0. Consequently

γW = lim
n→+∞�W(un) = lim

n→+∞�(un)

= lim
n→+∞�(vn) = lim

n→+∞

[
�(vn) − 1

2
�′(vn)vn

]
≥ �(v) − 1

�′(v)v = �(v) ≥ γ

2
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which is absurd, proving that u �= 0. Now, we repeat the same argument explored in the periodic 
case to conclude that u is a ground state solution of (2.1). �
3. The case N = 2

In this section we are going to show the existence of ground state solution for the following 
indefinite problem

{
−�u + (V (x) − W(x))u = f (x,u), in R

2,

u ∈ H 1(R2),
(3.35)

by assuming (V1), (V2), (W1), (W2) and (f1)–(f6). Since we will work with exponential critical 
growth, in the next subsection we recall some facts involving this type of growth.

3.1. Results involving exponential critical growth

The exponential critical growth on f is motivated by the following estimates proved by 
Trudinger [32] and Moser [19].

Lemma 3.1 (Trudinger–Moser inequality for bounded domains). Let � ⊂R
2 be a bounded do-

main. Given any u ∈ H 1
0 (�), we have

∫
�

eα|u|2dx < ∞, for every α > 0.

Moreover, there exists a positive constant C = C(|�|) such that

sup
||u||≤1

∫
�

eα|u|2dx ≤ C, for all α ≤ 4π.

The next result is a version of the Trudinger–Moser inequality for whole R2, and its proof can 
be found in Cao [4] (see also Ruf [24]).

Lemma 3.2 (Trudinger–Moser inequality for unbounded domains). For all u ∈ H 1(R2), we have∫ (
eα|u|2 − 1

)
dx < ∞, for every α > 0.

Moreover, if |∇u|22 ≤ 1, |u|2 ≤ M < ∞ and α < 4π , then there exists a positive constant C =
C(M, α) such that ∫ (

eα|u|2 − 1
)

dx ≤ C.
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The Trudinger–Moser inequalities will be strongly utilized throughout this section in order to 
deduce important estimates. The reader can find more recent results involving this inequality in 
[6], [10], [11], [18] and references therein.

In the sequel, we state some technical lemmas found in [3] and [7], which will be essential to 
carry out the proof of our results.

Lemma 3.3. Let α > 0 and t ≥ 1. Then, for every each β > t , there exists a constant C =
C(β, t) > 0 such that (

e4π |s|2 − 1
)t ≤ C

(
eβ4π |s|2 − 1

)
, ∀s ∈ R.

Lemma 3.4. Let (un) be a sequence such that un(x) → u(x) a.e. in R2 and (f (x, un)un) is 
bounded in L1(R2). Then, f (x, un) → f (x, u) in L1(BR(0)) for all R > 0, and so,∫

f (x,un)φ dx →
∫

f (x,u)φ dx, ∀φ ∈ C∞
0 (R2).

3.2. Technical lemmas

In this subsection we have used the same notations of Section 2, however we will recall some 
of them for the convenience of the reader. In what follows, we denote by �W : H 1(R2) → R the 
energy functional given by

�W(u) := 1

2
B(u,u) − 1

2

∫
W(x)|u|2dx −

∫
F(x,u)dx,

where B : H 1(R2) × H 1(R2) → R is the bilinear form

B(u, v) :=
∫

(∇u∇v + V (x)uv)dx, ∀ u,v ∈ H 1(R2).

It is well known that �W ∈ C1(H 1(R2), R) with

�′
W(u)v = B(u, v) −

∫
W(x)uvdx −

∫
f (x,u)vdx, ∀u,v ∈ H 1(R2).

Therefore critical points of �W are solutions of (3.35). Moreover, we can rewrite the functional 
�W of the form

�W(u) = 1

2
‖u+‖2 − 1

2
‖u−‖2 − 1

2

∫
W(x)|u|2 dx −

∫
F(x,u)dx.

In what follows, we also consider the C1-functional � : H 1(R2) → R

�(u) := 1

2
B(u,u) −

∫
F0(x,u)dx

or equivalently
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�(u) = 1

2
‖u+‖2 − 1

2
‖u−‖2 −

∫
F0(x,u) dx,

whose the critical points are weak solutions of periodic problem{
−�u + V (x) = F0(x,u), in R

2,

u ∈ H 1(R2)
(3.36)

As in Section 2, we will consider the sets

M := {u ∈ H 1(R2) \ E− ; �′
W(u)u = 0 and �′

W(u)v = 0,∀ v ∈ E−},
E(u) := E− ⊕Ru and Ê(u) := E− ⊕ [0,+∞)u

Hence

E(u) = E− ⊕Ru+ and Ê(u) = E− ⊕ [0,+∞)u+.

Moreover, we fix the real numbers

γW := inf
M

�W and γ := inf
M

�.

Lemma 3.5. If u ∈M and w = su + v where s ≥ 1 and v ∈ E− such that w �= 0, then

�W(u + w) < �W(u)

Proof. The proof follows as in Lemma 2.1. �
Lemma 3.6. Let K ⊂ E+ \ {0} be a compact subset, then there exists R > 0 such that 
�W(w) ≤ 0, ∀ w ∈ E(u) \ BR(0) and u ∈K.

Proof. We repeat the argument used in the proof of [25, Lemma 2.2]. �
Lemma 3.7. For all u ∈ H 1(R2), the functional �W |E(u) is weakly upper semicontinuous.

Proof. See proof of Lemma 2.3. �
Lemma 3.8. For all u ∈ H 1(R2) \ E−, M ∩ Ê(u) is a singleton set and the element of this set 
is the unique global maximum of �W |

Ê(u)
.

Proof. See proof of Lemma 2.4. �
In the proof of the next lemma the fact that f has an exponential critical growth brings some 

difficulty and we will do its proof.

Lemma 3.9. There exists ρ > 0 such that inf
Bρ(0)∩E+ �W > 0.
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Proof. Given p > 2 and ε > 0, there is Cε > 0 such that

|F(x, t)| ≤ ε|t |2 + Cε |t |p(e4πt2 − 1), ∀(x, t) ∈R
2 ×R.

Then, for all u ∈ E+, the Lemmas 3.2 and 3.3 lead to

�W(u) = 1

2
||u||2 − 1

2

∫
W(x)|u|2dx −

∫
F(x,u)dx

≥ 1

2
||u||2 − �

2

∫
|u|2dx − ε

∫
|u|2dx − Cε

∫
|u|p(e4πu2 − 1)dx

= 1

2
||u||2 − �

2�
|||u||2 − ε

�
||u||2 − Cε |u|p2p

(∫
(e8πu2 − 1)dx

) 1
2

≥
[

1

2

(
1 − �

�

)
− ε

�

]
||u||2 − C||u||p

(∫
(e8πu2 − 1)dx

) 1
2

.

By Lemma 3.2, if ρ <
√

3
2
√

2
,

sup
‖u‖=ρ

∫
(e8πu2 − 1)dx ≤ sup

‖v‖≤1

∫
(e3πu2 − 1)dx = C < ∞.

So,

�W(u) ≥
[

1

2

(
1 − �

�

)
− ε

�

]
||u||2 − C||u||p.

Hence, decreasing ρ if necessary and fixing ε small enough, we get

�W(u) ≥
[

1

2

(
1 − �

�

)
− ε

�

]
ρ2 − Cρp = β > 0. �

Lemma 3.10. The real number γW is positive. In addition, if u ∈ M then ||u+|| ≥ max{||u−||,√
2γW }.

Proof. See proof of Lemma 2.6. �
The next lemma shows that (PS) sequences of �W are bounded, as we are working with the 

exponential critical growth the arguments explored in Section 2 do not work in this case and a 
new proof must be done.

Lemma 3.11. If (un) is a sequence such that

�W(un) ≤ d, ±�′
W(un)u

±
n ≤ d||un|| and − �′

W(un)un ≤ d

for some d > 0, then (un) is bounded in H 1(R2) and (f (un)un) is bounded in L1(R2).
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Proof. First of all, note that(
1

2
− 1

θ

)∫
f (x,un)undx ≤ �W(un) − 1

2
�′

W(un)un ≤ 2d.

Hence, 
(∫

f (x,un)undx
)

is bounded. Recalling that f (x, t)t ≥ 0 for all t ∈ R and x ∈ R
2, it 

follows that (f (x, un)un) is bounded in L1(R2). On the other hand, we know that

||u+
n ||2 ≤ d||u+

n || +
∫

f (x,un)u
+
n dx +

∫
W(x)unu

+
n dx

and so,

||u+
n ||2 ≤ d||u+

n || +
(∫

f (x,un)vndx

)
||u+

n ||H 1(R2) +
∫

W(x)unu
+
n dx (3.37)

where vn := u+
n

||u+
n ||

H1(R2)

.

Claim 3.12. 
(∫

f (x,un)vndx
)

is a bounded sequence.

Indeed, by a direct computation, there exists K > 0 such that

|f (x, t)| ≤ �e1/4 implies |f (x, t)|2 ≤ Kf (x, t)t, uniformly in x. (3.38)

Moreover, by [8, Lemma 2.11],

rs ≤ (er2 − 1) + s(log+s)1/2 + 1

4
s2χ[0,e1/4](s) ∀r, s ≥ 0. (3.39)

Now, the Lemma 3.2 combined with the above inequalities for r = |vn| and s = 1
�
|f (un)| leads 

to ∣∣∣∣∫ f (x,un)vndx

∣∣∣∣ ≤ �

∫
1

�
|f (un)||vn|dx ≤ �

∫
(ev2

n − 1)dx+

+
∫

|f (x,un)|
(

log+
(

1

�
|f (x,un)|

))1/2

dx+
1

4�

∫
|f (x,un)|2χ[0,e1/4]

(
1

�
|f (x,un)|

)
dx ≤

�T +
∫

|f (x,un)|
(
log+ (

e4πu2
n

))1/2
dx + 1

4�

∫
|f (x,un)|≤�e1/4

|f (x,un)|2dx ≤

�T +
∫

|f (x,un)||un|
√

4πdx + 1

4�

∫
|f (x,un)|≤�e1/4

Kf (x,un)undx.

As (f (x, un)un) is bounded in L1(R2), the last inequality yields 
(∫

f (x,un)vndx
)

is bounded. 
Consequently, there exists A0 > 0 satisfying
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∣∣∣∣∫ f (x,un)vndx

∣∣∣∣ ≤ A0, ∀n ∈ N.

Thereby, by (3.37),

||u+
n ||2 ≤ d||u+

n || + A0||u+
n ||H 1(R2) +

∫
W(x)unu

+
n dx. (3.40)

Analogously, there is B0 > 0 such that

||u−
n ||2 ≤ d||u−

n || + B0||u−
n ||H 1(R2) −

∫
W(x)unu

−
n dx. (3.41)

The inequalities (3.40) and (3.41) combine to give

||un||2 ≤ C||un|| + C||un|| +
∫

W(x)(unu
+
n − unu

−
n )dx = 2C||un||+

+
∫

W(x)((u+
n )2 − (u−

n )2)dx ≤ 2C||un|| +
∫

W(x)(u+
n )2dx ≤ 2C||un|| + �

�
||u+

n ||2

for some C > 0. Hence,

(
1 − �

�

)
||un||2 ≤ 2C̃||un||,

from where it follows that (un) is bounded. �
As a byproduct of the last lemma we have the corollary below

Corollary 3.13. �W is coercive on M, that is, �W(u) → +∞ as ||u|| → +∞, u ∈ M.

As in Section 2, the Lemma 3.8 permits to define a function

m : E+ \ {0} → M where m(u) ∈ Ê(u) ∩M ∀u ∈ E+ \ {0}.

Now, we invite the reader to observe that the same approach used in Section 2 works to 
guarantee that the proposition below holds

Proposition 3.14. There exists a (PS)γW
sequence for �W .

Our next proposition is crucial when f has an exponential critical growth.

Proposition 3.15. Fixed Ã ∈ (0, 1/a), there is λ∗ > 0 such that γW < Ã2

2 for infR2 D(x) > λ∗, 
where a was given in (2.5).
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Proof. Let u ∈ E+ with u �= 0 and set

hD(s) := As2 − λBsq,

where

λ = inf
x∈R2

D(x), A = 1

2
||u||2 and B = ξ

∫
|u|qdx,

with ξ given in Lemma 2.7. Then, a straightforward computation leads to

max
s≥0

hD(s) =
(

A − 2A

q

)(
q−2

√
2A

qBλ

)2

.

Thereby, by (f6) and Lemma 2.7,

c ≤ sup
s ∈ [0,+∞)

v ∈ E−

�W(su + v) = sup
||su + v|| ≤ r

s ≥ s0, v ∈ E−

�W(su + v)

≤ sup
||su + v|| ≤ r

s ≥ s0, v ∈ E−

[
1

2
s2||u||2 −

∫
F(x, su + v)dx

]

≤ sup
||su + v|| ≤ r

s ≥ s0, v ∈ E−

[
1

2
s2||u||2 − λ

∫
|su + v|qdx

]

≤ sup
||su + v|| ≤ r

s ≥ s0, v ∈ E−

[
1

2
s2||u||2 − λξsq

∫
|u|qdx

]

= sup
||su + v|| ≤ r

s ≥ s0, v ∈ E−

hD(s)

≤ max
s≥0

hD(s) =
(

A − 2A

q

)(
q−2

√
2A

qBλ

)2

.

From the last inequality there is λ∗ > 0 such that

(
A − 2A

q

)(
q−2

√
2A

qBλ

)2

<
Ã2

2
, ∀λ ≥ λ∗,

finishing the proof. �
Proposition 3.16. Fix infx∈R2 D(x) ≥ λ∗ and r > 0. Then, there exist a sequence (yn) ⊂R

2 and 
η > 0 such that
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∫
Br(yn)

|u+
n |2dx ≥ η > 0, ∀n ∈ N.

Moreover, increasing r if necessary, the sequence (yn) can be chosen in Z2.

Proof. Suppose by contradiction that the lemma does not hold for some r > 0. Then, by a lemma 
due to Lions [14],

u+
n → 0 in Lp(R2), ∀ p ∈ (2,+∞).

Define wn := Ã
u+

n

||u+
n || . Since un ∈ M for all n ∈N, from Lemma 3.10 we have lim inf

n→+∞||u+
n || > 0, 

and so,

wn → 0 in Lp(R2), ∀ p ∈ (2,+∞).

On the other hand, we also know that

||wn||H 1(R2) = Ã
||u+

n ||H 1(R2)

||u+
n || ≤ Ãa

||u+
n ||

||u+
n || = Ãa < 1.

As wn ∈ Ê(un) and un ∈ M, we derive that

�(un) ≥ �(wn) = 1

2
Ã2 −

∫
F(x,wn)dx. (3.42)

By [2, Proposition 2.3], we have 
∫

F(x, wn)dx → 0. Therefore, passing to the limit in (3.42) as 
n → +∞, we obtain

γW ≥ Ã2

2
,

which contradicts the Proposition 3.15. Thus, there are (zn) ⊂ R
2 and η > 0 such that

∫
Br (zn)

|u+
n |2dx ≥ η > 0, ∀n ∈ N.

Now, we repeat the same idea explored in Lemma 2.17 to conclude the proof. �
3.3. Proof of Theorem 1.1: the case N = 2

As in Section 2, the proof will be divided into two cases, the Periodic Case and the Asymp-
totically Periodic Case.
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3.4. Periodic case

Proof. First of all, we recall there is a (PS)γW
sequence (un) for � which must be bounded. 

Thus, there is u ∈ H 1(R2) such that for some subsequence of (un), still denoted by itself, we 
have

un ⇀ u in H 1(R2)

and

un(x) → u(x) a.e. in R
2.

Moreover, by Lemma 3.11 the sequence (f (x, un)un) is bounded in L1(R2). Therefore, by 
Lemma 3.4,

�′(u)φ = 0, ∀φ ∈ C∞
0 (R2).

If we combine the Lemma 3.2 with the density of C∞
0 (R2) in H 1(R2), we see that u is a critical 

point of �, that is,

�′(u)v = 0, ∀v ∈ H 1(R2).

Moreover, by Fatou’s Lemma, we also have

�(u) ≤ γ.

If u �= 0, we must have

�(u) ≥ γ,

showing that �(u) = γ , and so, u is a ground state solution.
If u = 0, we can apply Lemma 3.16 to get a sequence (yn) ⊂ Z

2 and real numbers r, η > 0
verifying ∫

Br(yn)

|u+
n |2dx ≥ η > 0, ∀n ∈N.

Setting vn(x) = un(x+yn), a direct computation gives that (vn) is also a (PS)γ for �. Moreover, 
for some subsequence, there is v ∈ H 1(R2) such that

vn ⇀ v in H 1(R2) and
∫

Br(0)

|v+|2dx ≥ η > 0,

showing that v �= 0. Therefore, arguing as above, v is a ground state solution for �. �
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3.5. The asymptotically periodic case

Proof. First of all, we recall that �W ≤ �, and so, γW ≤ γ . As in Section 2, we will consider 
the cases γW = γ and γW < γ . The first one follows as in Section 2, and we will omit its proof.

In what follows, we are considering γW < γ and (un) be a (PS)γW
sequence for �W which 

was given in Lemma 3.14. The sequence (un) is bounded by Lemma 3.11. Thus, there is u ∈
H 1(R2) and a subsequence of (un), still denoted by itself, such that un ⇀ u in H 1(R2). Suppose 
by contradiction u = 0. Repeating the arguments explored in the case N ≥ 3, we have∫

W(x)|un|2dx → 0 and sup
‖ψ‖≤1

∣∣∣∣∫ W(x)unψdx

∣∣∣∣ → 0.

From (f1), given ε > 0 and β > 0 such that

β <
2π

supn∈N ||un||2 ,

it must exist η > 0 satisfying

|f ∗(x, s)| ≤ ε(eβs2 − 1) for |t | ≥ η and ∀x ∈ R
2.

Therefore, by Lemma 3.2, for each R > 0 we have

∫
[|x|≥R]∩[|un|≥η]

|f ∗(x,un)||ψ |dx ≤
∫

[|x|≥R]∩[|un|≥η]
ε|eβu2

n − 1||ψ |dx ≤

≤ ε

⎛⎜⎝∫
R2

|eβu2
n − 1|2dx

⎞⎟⎠
1/2 ⎛⎜⎝∫

R2

|ψ |2dx

⎞⎟⎠
1/2

dx ≤ εK||ψ ||H 1(R2).

On the other hand, fixing R large enough,

∫
[|x|≥R]∩[|un|≤η]

|f ∗(x,un)||ψ |dx ≤ C

∫
|x|≥R

H(x)|ψ |dx

≤
⎛⎜⎝ ∫

|x|≥R

|H(x)|2dx

⎞⎟⎠
1/2 ⎛⎜⎝∫

R2

|ψ |2dx

⎞⎟⎠
1/2

≤ εC||ψ ||H 1(R2).

Thus,

sup
‖ψ‖≤1

∣∣∣∣∣∣∣
∫

f ∗(x,un)ψ dx

∣∣∣∣∣∣∣ ≤ ε(C + K)||ψ ||H 1(R2).
|x|≥R
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Now, as f ∗ has a subcritical growth and un → 0 in L2(BR(0)), we also have

sup
‖ψ‖≤1

∣∣∣∣∣∣∣
∫

|x|≤R

f ∗(x,un)ψ dx

∣∣∣∣∣∣∣ → 0.

Therefore,

sup
‖ψ‖≤1

∣∣∣∣∣∣∣
∫
R2

f ∗(x,un)ψ dx

∣∣∣∣∣∣∣ → 0.

A similar argument works to prove that

0 ≤
∫

F ∗(x,un)dx ≤
∫

f ∗(x,un)undx → 0.

The above limits yield

�(un) → γW and ||�′(un)|| → 0.

Arguing as in the periodic case, without loss of generality, we can assume that

un ⇀ u in H 1(R2), u �= 0 and �′(u) = 0.

Thus, �(u) ≥ γ . On the other hand, by Fatou’s Lemma,

�(u) ≤ lim inf
n→+∞�(un) = γW ,

which is absurd, because we are supposing γW < γ . Thereby, u �= 0 and since (f (x, un)un) is 
bounded in L1(R2), we can conclude that u is a ground state solution of �W . �
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