期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:264
Sharp threshold of blow-up and scattering for the fractional Hartree equation
Article
Guo, Qing1  Zhu, Shihui2,3 
[1] Minzu Univ China, Coll Sci, Beijing 100081, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
[3] Sichuan Normal Univ, Dept Math, Chengdu 610066, Sichuan, Peoples R China
关键词: Fractional Schrodinger equation;    L-2-supercritical;    Scattering;    Blow-up;   
DOI  :  10.1016/j.jde.2017.11.001
来源: Elsevier
PDF
【 摘 要 】

We consider the fractional Hartree equation in the L-2-supercritical case, and find a sharp threshold of the scattering versus blow-up dichotomy for radial data: If M[u(0)](s-sc/sc) E[u(0)] < M[Q](s-sc/sc) E[Q] and M[u(0)](s-sc/sc) parallel to u(0)parallel to(2)(<(H)over dot>s) < M[Q](s-sc/sc) parallel to Q parallel to(2)(<(H)over dot>s), then the solution u(t) is globally well-posed and scatters; if M[u(0)](s-sc/sc) E[u(0)] < M[Q](s-sc/sc) E[Q] and M[u(0)](s-sc/sc) parallel to u(0)parallel to(2)(<(H)over dot>s) > M[Q](s-sc/sc)parallel to Q parallel to(2)(<(H)over dot>s), the solution u(t) blows up in finite time. This condition is sharp in the sense that the solitary wave solution e(it) Q(x) is global but not scattering, which satisfies the equality in the above conditions. Here, Qis the ground-state solution for the fractional Hartree equation. (C) 2017 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2017_11_001.pdf 1189KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次