JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:462 |
Ground state of Kirchhoff type fractional Schrodinger equations with critical growth | |
Article | |
Zhang, Jian1  Lou, Zhenluo2  Ji, Yanju1  Shao, Wei3  | |
[1] China Univ Petr, Coll Sci, Qingdao 266580, Shandong, Peoples R China | |
[2] Henan Univ Sci & Technol, Sch Math & Stat, Luoyang 471023, Peoples R China | |
[3] QuFu Normal Univ, Sch Management, Rizhao 276826, Peoples R China | |
关键词: Fractional Schrodinger equation; Kirchhoff type; Critical growth; Variational method; | |
DOI : 10.1016/j.jmaa.2018.01.060 | |
来源: Elsevier | |
【 摘 要 】
In this paper, we study the critical Kirchhoff type fractional Schrodinger equation: (1+alpha integral(3)(R)integral(3)(R) |u(x) - u(y)|(2)/|x-y|(3-2s) dxdy) (-Delta)(s)u + u = beta f(u) + u(2*)s 1 in R-3, (0.1) where s is an element of (0, 1) and 2(S)(*) = 6/3-2s. We establish the Pohozaev type identity of (0.1). When s is an element of[3/4, 1), under some conditions on alpha, beta and f (u), we obtain some results on the existence of ground state solutions. When s is an element of (0, 3/4], we also prove the non-existence result. In particular, when alpha = 0, we obtain an existence result. (C) 2018 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jmaa_2018_01_060.pdf | 534KB | download |