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Abstract In this paper, we study the critical Kirchhoff type fractional Schrödinger equation:(
1 + α

∫
R3

∫
R3

|u(x)− u(y)|2
|x− y|3+2s

dxdy

)
(−Δ)su+ u = βf(u) + u2∗s−1 in R

3, (0.1)

where s ∈ (0, 1) and 2∗s = 6
3−2s

. We establish the Pohozǎev type identity of (0.1). When

s ∈ [ 3
4
, 1), under some conditions on α, β and f(u), we obtain some results on the existence of

ground state solutions. When s ∈ (0, 3
4
], we also prove the non-existence result. In particular,

when α = 0, we obtain an existence result.

Keywords: Fractional Schrödinger equation; Kirchhoff type; Critical growth; Variational

method

1 Introduction

In this paper, we study the Kirchhoff type fractional Schrödinger equation with
critical growth:(

1 + α

∫
R3

∫
R3

|u(x)− u(y)|2
|x− y|3+2s

dxdy

)
(−Δ)su+u = βf(u)+u2∗s−1 in R

3, (1.1)

where α ≥ 0, β > 0 are parameters, s ∈ (0, 1), 2∗s = 6
3−2s is the critical exponent.

The fractional Schrödinger equation is formulated by Laskin [21, 22]. It is a
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fundamental of fractional quantum mechanics. Also, it appears in various areas
such as plasma physics, optimization, finance, free boundary obstacle problems,
population dynamics and minimal surfaces.

Finding ground state solutions is a very classical problem. The ground state
solutions are those solutions whose energy level is minimized. When α = 0,
problem (1.1) reduces to the equation

(−Δ)su = g(u) in R
N . (1.2)

When s = 1, in the celebrated paper [5, 6], the authors gave almost neces-
sary and sufficient conditions of the existence of ground state solutions of the
subcritical problem

−Δu = g(u) in R
N . (1.3)

Precisely, they assumed the following conditions:

(g1) g(u) ∈ C(R,R) is continuous and odd;

(g2) −∞ < lim infu→0
g(u)
u ≤ lim supu→0

g(u)
u = −a < 0 when N ≥ 3 and

limu→0
g(u)
u = −a < 0 when N = 2;

(g3) when N ≥ 3, lim supu→∞
g(u)

|u|
N+2
N−2

≤ 0; when N = 2, for any α > 0, there

exists Cα > 0 such that g(u) ≤ Cαexp(αu
2) for all u > 0;

(g4) there exists ξ0 > 0 such that G(ξ0) =
∫ ξ0
0

g(s)ds > 0.

Motivated by [5, 6], Chang and Wang [11] considered the fractional subcritical
problem

(−Δ)su = g(u), u ∈ H1(RN ) (N ≥ 2). (1.4)

They proved that when s ∈ (0, 1) and g ∈ C1(R,R) satisfying (g1)-(g4), problem
(1.4) had ground state solutions. For the critical case, by using the Nehari
manifold method, the authors in [19, 28, 30] also obtained ground state solutions
of (1.4). We point out that, in [19, 28, 30], the Ambrosetti-Rabinowitz condition
and the monotonicity of u → f(u)/u are essential. Recently, without these
conditions, the authors in [34] proved the existence of ground state solutions
of the fractional Schrödinger-Poisson system. A natural question is whether
similar results hold for the Kirchhoff type fractional Schrödinger equation (1.1).

In the last few years, many papers focused on the Kirchhoff type equation,
which occurs in various branches of mathematical physics. On the contrary,
the results of Kirchhoff type fractional equations are relatively few. When the
domain is bounded in R

N , Fiscella and Valdinoci [16] established a station-
ary Kirchhoff type problem and proved the existence, asymptotic behavior of
nontrivial solutions. Subsequently, Autuori, Fiscella and Pucci [4] extended
the results of [16] to a more general case. By using the truncation argument
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and the genus theory, Fiscella [17] obtained infinitely many solutions of a crit-
ical Kirchhoff type problem involving a fractional operator. When the domain
is unbounded, Pucci, Xiang and Zhang [25] considered the nonhomogeneous
fractional p-Laplacian equation of Schrödinger-Kirchhoff type in R

N . By us-
ing the Ambrosetti-Rabinowitz condition, they obtained at least two nontrivial
solutions. For the critical case, Pucci and Saldi [24] proved the existence and
multiplicity of solutions of a critical Kirchhoff type eigenvalue problem with a
fractional Laplacian in R

N . However, there are still few things about the Kirch-
hoff type fractional equation with critical growth. Recently, the authors in [23]
studied ground state solutions of the critical fractional Kirchhoff equation for
the case s ∈ ( 34 , 1). However, when s ∈ (0, 3

4 ], to our best knowledge, there are
no results on the corresponding critical problem.

Motivated by this fact, in this paper, we study the existence of ground
state solutions of (1.1). To solve the problem, we must deal with the lack of
the compactness caused by the critical term. Also, we have to consider the
interaction between the Kirchhoff term and the critical term, which is crucial
when we seek solutions. Moreover, when s ∈ (0, 3

4 ], since 2
∗
s ≤ 4, it is difficult to

derive the geometric structure of the functional and the boundness, convergence
of the Palais-Smale sequences. In this paper, we first consider the case s ∈ ( 34 , 1).
We assume the following conditions:

(f1) f ∈ C1(R,R) and limu→0
f(u)
u = limu→∞

f(u)

u2∗s−1 = 0.

(f2) F (u) =
∫ u

0
f(s)ds ≥ 0 for u ∈ R. Moreover, there exist D0, R0 > 0 and

p0 ∈ (2, 2∗s) such that F (u) ≥ D0

R
p0
0

|u|p0 for u ≥ R0.

Theorem 1.1. Let s ∈ ( 34 , 1). If (f1)-(f2) hold, then there exists β0 > 0 such
that for β > β0, problem (1.1) has a radial ground state solution.

Remark 1.1. When replacing (f2) with the stronger condition:

(f ′
2) there exist D > 0 and q ∈ (2, 2∗s) such that f(u) ≥ Duq−1 for u ≥ 0,

the authors in [23] proved the existence of ground state solutions of the critical
fractional Kirchhoff equation with D large enough. The condition (f ′

2) was in-
troduced in [35] and played an important role in estimating the upper bound of
the energy. In this paper, instead of (f ′

2), we use a more general condition (f2),
which involves more nonlinearities. Moreover, instead of using the monotonicity
trick developed by Jeanjean [20], we give a direct proof here.

Remark 1.2. Without the Ambrosetti-Rabinowitz condition and the monotonic-
ity of u → f(u)

u , we cannot use the Nehari approach to obtain ground state
solutions of (1.1). In particular, we cannot prove the boundedness of the Palais-
Smale sequences easily. To overcome the difficulties, we establish the Pohozǎev
type identity.
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Now we consider the case s ∈ (0, 3
4 ]. Denote the best Sobolev constant:

S(s) = inf
u∈Ds,2(R3)\{0}

∫
R3 |∇u|2dx( ∫
R3 |u|2∗sdx

) 2
2∗s

.

We make the following assumptions:

(f ′
1) f ∈ C(R,R) and limu→0

f(u)
u = limu→∞

f(u)

u2∗s−1 = 0.

(f3) There exists ξ > 0 such that F (ξ) =
∫ ξ

0
f(s)ds > 0.

Theorem 1.2. Let s = 3
4 , α < 1

S(s)2 , β > 0. If (f1)-(f2) hold, then problem

(1.1) has a radial ground state solution.

Theorem 1.3. Let s = 3
4 , α > 1

S(s)2 . Then

(i) there exists β1 > 0 such that for β ∈ (β1,+∞), problem (1.1) has a radial
ground state solution if (f1) and (f3) hold;

(ii) there exists β2 ∈ (0, β1) such that for β ∈ (0, β2), problem (1.1) has no
nontrivial solutions if (f ′

1) holds.

Theorem 1.4. Let s ∈ (0, 3
4 ), α > 2s(3−4s)

3−4s
2s

[S(s)]
3
2s (3−2s)

3−2s
2s

. Then there exists β3 > 0

such that for β ∈ (0, β3), problem (1.1) has no nontrivial solutions if (f ′
1) holds.

Remark 1.3. Because of the presence of the Kirchhoff term and the growth
of the nonlinearity, it is difficult to deal with the geometric structure of the
functional and the convergence of the Palais-Smale sequences. To solve the
problem, the condition (f2) or (f3) is essential.

The condition f ∈ C1(R,R) is only used to guarantee the Pohozǎev type
identity. When α = 0, problem (1.1) reduces to

(−Δ)su+ u = βf(u) + u2∗s−1 in R
3. (1.5)

By replacing the condition (f1) with (f ′
1), we get the following result, which

improves the existing results.

Theorem 1.5. Let β > 0. If (f ′
1) and (f2) hold with s ∈ (0, 3

4 ], p0 ∈ (2, 2∗s), or
s ∈ ( 34 , 1), p0 ∈ (2∗s − 2, 2∗s), then problem (1.5) has a radial nontrivial solution.

Before closing this section, we say a few words on the equation

(−Δ)su+ V (x)u = f(x, u) in R
N . (1.6)

A valid tool to deal with the fractional problem is due to Caffarelli and Silvestre.
In the remarkable paper [9], they expressed the nonlocal operator (−Δ)s as a

4



Dirichlet-Neumann map for a certain elliptic boundary value problem with local
differential operators defined on the upper half space. Subsequently, this com-
mon approach is widely used to deal with the fractional equation in the respects
of regularity and variational methods. When V (x) ≡ 1 and f(x, u) has subcrit-
ical growth satisfying the Ambrosetti-Rabinowitz condition, Felmer, Quaas and
Tan [18] proved the existence, regularity, decay, and symmetry properties of
positive solutions of (1.6). When lim|x|→∞ V (x) = +∞ and f(x, u) = |u|p−1u,
the authors in [12] obtained the existence of ground state solutions of (1.6).
Later, by using the Nehari manifold method, Simone [31] provided a general-
ization of the main result in [12]. Under weaker assumptions of the behavior of
the potential V at infinity, he also gave some existence results. When f(x, u)
is asymptotically linear with respect to u at infinity, Chang [10] proved the
existence of ground state solutions. By using the method of Pohozaev-Nehari
manifold, the monotonic trick and the global compactness principle, Teng [32]
obtained ground state solutions of the fractional Schrödinger-Poisson system
with critical growth. Recently, the semiclassical limit of problem (1.6) was also
discussed. See [1, 2, 19, 29, 30] and the references therein.

The outline of this paper is as follows: in Section 2, we give some important
lemmas; in Section 3, we prove Theorem 1.1; in Section 4, we prove Theorems
1.2-1.3; in Section 5, we prove Theorem 1.4; in Section 6, we prove Theorem
1.5.

2 Preliminary Lemmas

We introduce some definitions. Let Φ be the Schwartz space of rapidly decaying
C∞ functions in R

3. For any s ∈ (0, 1), define the functional Laplacian (−Δ)s by
F((−Δ)sφ)(ξ) = |ξ|2sF(φ)(ξ), where φ ∈ Φ, ξ ∈ R

3, F is the Fourier transform.
In particular, if φ is smooth, then

(−Δ)sφ(x) = CsP.V.

∫
R3

|φ(x)− φ(y)|2
|x− y|3+2s

dx,

where P.V. is the Cauchy principle value, Cs is the normalization constant.
Let û = F(u). For any s ∈ (0, 1), define the fractional Sobolev space

Hs(R3) =

{
u ∈ L2(R3) :

∫
R3

(|ξ|2sû2 + û2)dξ < ∞
}

with the norm ‖u‖Hs(R3) =
(∫

R3(|ξ|2sû2 + û2)dξ
) 1

2 . From Plancherel’s theorem,
for any u ∈ Hs(R3),∫

R3

|u|2dx =

∫
R3

|û|2dx,
∫
R3

|(−Δ)
s
2u|2dx =

∫
R3

|ξ|2sû2dξ.

Then

‖u‖Hs(R3) =

(∫
R3

(|(−Δ)
s
2u|2 + u2)dx

) 1
2

.
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From [15], ∫
R3

|(−Δ)
s
2u|2dx =

1

2
Cs

∫
R3

∫
R3

|u(x)− u(y)|2
|x− y|3+2s

dxdy. (2.1)

Without loss of generality, we assume Cs = 2. By [15], the embeddingHs(R3) ↪→
Lp(R3) is continuous for p ∈ [2, 2∗s], and is locally compact for p ∈ [2, 2∗s). For
simplicity, we denote ‖.‖Hs(R3) and ‖.‖Lp(R3) by ‖.‖ and ‖.‖p, respectively. Let

Hs
r (R

3) = {u ∈ Hs(R3) : u(x) = u(|x|)}.
Lemma 2.1. ([11]) Assume that P ∈ C(R,R) satisfies

lim
t→0

P (t)

|t|2 = lim
t→∞

P (t)

|t|2∗s = 0

and there exists a bounded sequence {un} ⊂ Hs
r (R

3), v ∈ L1(R3) such that
limn→∞ P (un(x)) = v(x) a.e. x ∈ R

3. Then P (un) → v in L1(R3) as n → ∞.

We denote Ds,2(R3) the completion of C∞
0 (R3) with respect to the norm

‖u‖Ds,2(R3) =

(∫
R3

|ξ|2sû2dξ

) 1
2

=

(∫
R3

|(−Δ)
s
2u|2dx

) 1
2

.

Define the best Sobolev constant:

S(s) = inf
u∈Ds,2(R3)\{0}

∫
R3 |(−Δ)

s
2u|2dx(∫

R3 |u(x)|2∗sdx
) 2

2∗s
.

By [14, 27], S(s) is attained by the functions ũ(x) = κ

(μ2+|x|2) 3−2s
2

, where κ ∈
R \ {0}, μ > 0. Let ū(x) = ũ(x)

‖ũ‖2∗s
, we have S(s) =

∫
R3 |(−Δ)

s
2 ū(x)|2dx. Let

u∗(x) = ū

(
x

S(s)
1
2s

)
. Then ‖u∗‖2∗s2∗s = [S(s)]

3
2s and (−Δ)su∗ = |u∗|2∗s−2u∗ in

R
3. For any ε > 0, define Uε(x) = ε−

3−2s
2 u∗(xε ). Then ‖Uε‖2

∗
s

2∗s
= [S(s)]

3
2s and

(−Δ)sUε = |Uε|2∗s−2Uε in R
3. Define ψ ∈ C∞

0 (B2r(0)) such that ψ(x) = 1 on
Br(0) and 0 ≤ ψ(x) ≤ 1. Let uε(x) = ψ(x)Uε(x). By [27],∫

R3

|(−Δ)
s
2uε|2dx ≤ [S(s)]

3
2s +O(ε3−2s),∫

R3

|uε|2∗sdx = [S(s)]
3
2s +O(ε3). (2.2)

By the direct calculation, there exists κ0 �= 0 such that

Uε(x) =ε−
3−2s

2 ū

(
x

ε[S(s)]
1
2s

)

=ε−
3−2s

2
κ0(

μ2 +

∣∣∣∣ x

ε[S(s)]
1
2s

∣∣∣∣
2
) 3−2s

2

.
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Thus,

‖uε‖22 ≤
∫
B2r(0)

|Uε(x)|2dx = ε−(3−2s)

∫
B2r(0)

κ2
0(

μ2 +

∣∣∣∣ x

ε[S(s)]
1
2s

∣∣∣∣
2
)3−2s dx

≤Cε2s
∫ 2r

μ[S(s)]
1
2s ε

0

t2

(1 + t2)3−2s
dt =

⎧⎪⎨
⎪⎩
O(ε2s), s ∈ (0, 3

4 ),

O(ε2s| log ε|), s = 3
4 ,

O(ε3−2s), s ∈ ( 34 , 1).

(2.3)

Define the functional on Hs(R3) by

I(u) =
1

2
‖u‖2 + α

4

(∫
R3

|(−Δ)
s
2u|2dx

)2

− β

∫
R3

F (u)dx− 1

2∗s

∫
R3

|u|2∗sdx.
(2.4)

Clearly, I ∈ C1(Hs(R3),R) and

〈I ′(u), v〉 =
(
1 + α

∫
R3

|(−Δ)
s
2u|2dx

)∫
R3

(−Δ)
s
2u(−Δ)

s
2 vdx+

∫
R3

uvdx

− β

∫
R3

f(u)vdx−
∫
R3

|u|2∗s−2uvdx, ∀ v ∈ Hs(R3).

Then critical points of I are weak solutions of (1.1).
We introduce the s-harmonic extension technique in [9] to establish the

Pohoz̆aev identity. Define the weighted space Xs(R3+1
+ ) the completion of

C∞
0 (R3) with respect to the norm

‖w‖Xs(R3+1
+ ) =

(
ks

∫
R+

∫
R3

y1−2s|∇w|2dxdy
) 1

2

,

where ks is a constant. For any u ∈ Ds,2(R3), we call its s-harmonic extension
w = Es(u) by the solution of the problem⎧⎨

⎩
− div(y1−2s∇w) = 0, in R

3+1
+ ,

w(x, 0) = u, on R
3.

By [7], we have ‖w‖Xs(R3+1
+ ) = ‖u‖Ds,2(R3). Moreover, by [8], the fractional

Laplacian operator (−Δ)s can be defined by the Dirichlet-to-Neumann map:

(−Δ)su(x) = lim
y→0+

y1−2s ∂w

∂y
(x, y), ∀ u ∈ Ds,2(R3).

Let g(u) = βf(u) + u2∗s−1 − u. Then (1.1) reduces to the local problem⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
(
1 + α

∫
R3

|(−Δ)
s
2u|2dx

)
div(y1−2s∇w) = 0, in R

3+1
+ ,

(
1 + α

∫
R3

|(−Δ)
s
2u|2dx

)
∂s
νw = g(w), on R

3,

(2.5)

7



where ∂s
νw(x, 0) = − 1

ks
limy→0+ y1−2s ∂w

∂y (x, y), ∀ x ∈ R
3. Obviously, if w is a

weak solution of (2.5), then u = w(., 0) := Tr(w) is a weak solution of (1.1).
Without loss of generality, we assume ks = 1. Now we establish the Pohoz̆aev
identity for the Kirchhoff type problem (1.1).

Lemma 2.2. Assume that (f1). If u ∈ Hs(R3) be a weak solution of (1.1),
then

3− 2s

2

(
1 + α

∫
R3

|(−Δ)
s
2u|2dx

)∫
R3

|(−Δ)
s
2u|2dx = 3

∫
R3

G(u)dx,

where G(u) =
∫ u

0
g(s)ds = βF (u) + 1

2∗s
|u|2∗s − 1

2 |u|2.

Proof. We use the idea in [11]. The standard argument shows that w = Es(u) ∈
C2(R3+1

+ ). For any R > 0 and r ∈ (0, R), define

DR,r = {z = (x, y) ∈ R
3 × [r,+∞) : |z| ≤ R}.

Let

∂D1
R,r = {z = (x, y) ∈ R

3 × {y = r} : |x|2 ≤ R2 − r2},
∂D2

R,r = {z = (x, y) ∈ R
3 × [r,+∞) : |z| = R}.

Then ∂DR,r = ∂D1
R,r ∪ ∂D2

R,r. Let �n be the unit outward normal vector on

∂DR,r. Then �n = (0, . . . , 0,−1) on ∂D1
R,r and �n = z

R on ∂D2
R,r. Note that

‖w‖2
Xs(R3+1

+ )
=
∫
R3 |(−Δ)

s
2u|2dx. So

(
1 + α

∫
R3

|(−Δ)
s
2u|2dx

)
div(y1−2s∇w)(z,∇w)

= div
[(

1 + α‖w‖2
Xs(R3+1

+ )

)
y1−2s(z,∇w)∇w

]
− y1−2s∇w∇(z,∇w)− αy1−2s∇w∇

[
‖w‖2

Xs(R3+1
+ )

(z,∇w)
]
.

By the direct calculation, we get

y1−2s∇w∇(z,∇w) = y1−2s

[
|∇w|2 + z∇

( |∇w|2
2

)]
.

Also,

y1−2s∇w∇
[
‖w‖2

Xs(R3+1
+ )

(z,∇w)
]

= ‖w‖2
Xs(R3+1

+ )
y1−2s∇w∇(z,∇w) + y1−2s∇w∇

(
‖w‖2

Xs(R3+1
+ )

)
(z,∇w)

= ‖w‖2
Xs(R3+1

+ )
y1−2s∇w∇(z,∇w).

8



Thus, (
1 + α

∫
R3

|(−Δ)
s
2u|2dx

)
div(y1−2s∇w)(z,∇w)

= div
[(

1 + α‖w‖2
Xs(R3+1

+ )

)
y1−2s(z,∇w)∇w

]
−
(
1 + α‖w‖2

Xs(R3+1
+ )

)
y1−2s

[
|∇w|2 + z∇

( |∇w|2
2

)]
. (2.6)

By the direct calculation,

y1−2s

[
|∇w|2 + z∇

( |∇w|2
2

)]

= y1−2s|∇w|2 + div

(
y1−2sz

|∇w|2
2

)
− div

(
y1−2sz

) |∇w|2
2

= div

(
y1−2sz

|∇w|2
2

)
+

2s− 3

2
y1−2s|∇w|2.

Also,

‖w‖2
Xs(R3+1

+ )
y1−2s

[
|∇w|2 + z∇

( |∇w|2
2

)]

= ‖w‖2
Xs(R3+1

+ )
y1−2s|∇w|2 + div

[
‖w‖2

Xs(R3+1
+ )

y1−2sz
|∇w|2

2

]

−∇
(
‖w‖2

Xs(R3+1
+ )

y1−2sz
) |∇w|2

2

= ‖w‖2
Xs(R3+1

+ )
y1−2s|∇w|2 + div

[
‖w‖2

Xs(R3+1
+ )

y1−2sz
|∇w|2

2

]

− div
(
y1−2sz

) ‖w‖2
Xs(R3+1

+ )

|∇w|2
2

.

Thus, (
1 + α

∫
R3

|(−Δ)
s
2u|2dx

)
div(y1−2s∇w)(z,∇w)

= div
[(

1 + α‖w‖2
Xs(R3+1

+ )

)
y1−2s(z,∇w)∇w

]
− div

[(
1 + α‖w‖2

Xs(R3+1
+ )

)
y1−2sz

|∇w|2
2

]

+
3− 2s

2

(
1 + α‖w‖2

Xs(R3+1
+ )

)
y1−2s|∇w|2. (2.7)

9



By (2.5) and (2.7),

0 =

∫
DR,r

(
1 + α

∫
R3

|(−Δ)
s
2u|2dx

)
div(y1−2s∇w)(z,∇w)dxdy

=

∫
∂DR,r

(
1 + α‖w‖2

Xs(R3+1
+ )

)
y1−2s(z,∇w)(∇w,�n)dσ

−
∫
∂DR,r

(
1 + α‖w‖2

Xs(R3+1
+ )

)
y1−2s(z, �n)

|∇w|2
2

dσ

+
3− 2s

2

(
1 + α‖w‖2

Xs(R3+1
+ )

)∫
DR,r

y1−2s|∇w|2dxdy. (2.8)

Similar to the argument of [11], we prove that there exists Rn → ∞ such that

lim
n→∞ lim

r→0+

∫
∂DRn,r

(
1 + α‖w‖2

Xs(R3+1
+ )

)
y1−2s

[
(z,∇w)(∇w,�n)− (z, �n)

|∇w|2
2

]

= −3

∫
R3

G(u)dx, (2.9)

and

lim
n→∞ lim

r→0+

3− 2s

2

(
1 + α‖w‖2

Xs(R3+1
+ )

)∫
DR,r

y1−2s|∇w|2dxdy

=
3− 2s

2

(
1 + α‖w‖2

Xs(R3+1
+ )

)∫
R

3+1
+

y1−2s|∇w|2dxdy

=
3− 2s

2

(
1 + α

∫
R3

|(−Δ)
s
2u|2dx

)∫
R3

|(−Δ)
s
2u|2dx. (2.10)

Combining (2.8)-(2.10), we get Lemma 2.2.

Let X be the Banach space. Recall that a sequence {un} ⊂ X is a (C)c
sequence for the functional I if I(un) → c and (1 + ‖un‖X)‖I ′(un)‖ → 0 as
n → ∞.

Theorem 2.1. ([26]) Let X be a real Banach space and suppose that I ∈
C1(X,R) satisfying

max{I(0), I(u1)} ≤ α2 < α1 ≤ inf
‖u‖=ρ

I(u)

for some ρ > 0 and u1 ∈ X with ‖u1‖ > ρ. Let c = infγ∈Γ max0≤t≤1 I(γ(t)),
where Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = u1}. Then there exists a (C)c
sequence {un} for the functional I satisfying c ≥ α1.

Theorem 2.2. ([20]) Let (X, ‖.‖X) be a Banach space and let J ⊂ R
+ be an

interval. Consider a family (Jλ)λ∈J of C1 functionals on X of the form

Jλ(u) = A(u)− λB(u), ∀ λ ∈ J,

10



where B(u) ≥ 0 for any u ∈ X and either A(u) → +∞ or B(u) → +∞ as
‖u‖X → ∞. Assume there exist two points v1, v2 in X such that

cλ = inf
γ∈Γ

max
t∈[0,1]

Jλ(γ(t)) > max{Jλ(v1), Jλ(v2)}, ∀ λ ∈ J,

where Γ = {γ ∈ C([0, 1], X) : γ(0) = v1, γ(1) = v2}. Then for almost every
λ ∈ J , there is a sequence {vn} ⊂ X such that {vn} is bounded, Jλ(vn) → cλ
and J ′

λ(vn) → 0 in X−1. Moreover, the map λ → cλ is continuous from the left.

3 The Case s ∈ (34 , 1)

Let H(u) = βF (u) + 1
2∗s
|u|2∗s . Then

I(u) =
1

2
‖u‖2 + α

4

(∫
R3

|(−Δ)
s
2u|2dx

)2

−
∫
R3

H(u)dx. (3.1)

Let

c̃ =
s

3
min

{
(2α)

3−2s
4s−3 [S(s)]

3
4s−3 , 2

3−2s
2s [S(s)]

3
2s

}
+

(4s− 3)α

12

[
min

{
(2α)

3−2s
4s−3 [S(s)]

3
4s−3 , 2

3−2s
2s [S(s)]

3
2s

}]2
.

Lemma 3.1. Let ε = 1

β
1
2s
. Then there exists β0 > 0 such that supt≥0 I(uε(

x
t )) <

c̃ for β > β0.

Proof. By the direct calculation, we have

I
(
uε

(x
t

))
=
t3−2s

2

∫
R3

|(−Δ)
s
2uε|2dx+

αt2(3−2s)

4

(∫
R3

|(−Δ)
s
2uε|2dx

)2

+
t3

2

∫
R3

|uε|2dx− t3
∫
R3

H(uε)dx. (3.2)

By (2.2)-(2.3), there exists ε1, C1 > 0 such that
∫
R3 |uε|2dx ≤ C1ε

3−2s and

‖uε‖2 ≤ 3[S(s)]
3
2s

2 for ε ∈ (0, ε1). Let

β > β1 := max

⎧⎪⎨
⎪⎩1,

1

ε2s1
,

(
μ[S(s)]

1
2s

r

)2s

,

⎛
⎝2μ2R

2
3−2s

0

κ
2

3−2s

0

⎞
⎠

2s
⎫⎪⎬
⎪⎭ .

Then by (3.2),

sup
t∈[0, 1β ]

I
(
uε

(x
t

))
≤ 1

2β3−2s

∫
R3

|(−Δ)
s
2uε|2dx+

1

2β3

∫
R3

|uε|2dx

+
α

4β2(3−2s)

(∫
R3

|(−Δ)
s
2uε|2dx

)2

≤
(
3[S(s)]

3
2s

4
+

9α[S(s)]
3
s

16

)
1

β3−2s
. (3.3)
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Note that uε(x) = ε−
3−2s

2
κ0(

μ2+

∣∣∣∣∣ x

ε[S(s)]
1
2s

∣∣∣∣∣
2) 3−2s

2

for |x| ≤ r. By β = 1
ε2s > β1,

we get uε(x) ≥ κ0ε
− 3−2s

2

(2μ2)
3−2s

2

≥ R0 for |x| ≤ μ[S(s)]
1
2s ε ≤ r. Then by (f2) and

ε = 1

β
1
2s
,

β

∫
R3

F (uε)dx ≥D0β

Rp0

0

∫
|x|≤μ[S(s)]

1
2s ε

|uε(x)|p0dx

≥D0β

Rp0

0

∫
|x|≤μ[S(s)]

1
2s ε

κp0

0 ε−
(3−2s)p0

2

(2μ2)
(3−2s)p0

2

dx

:=B0βε
3− (3−2s)p0

2 = B0β
1− 3

2s+
(3−2s)p0

4s . (3.4)

Let

β > β2 := max

{
β1,

(
C1

B0

) 4s
(3−2s)p0

}
.

By ε = 1

β
1
2s

and (3.4),

∫
R3

|uε|2dx ≤ C1ε
3−2s =

C1

β
3−2s
2s

≤ β

∫
R3

F (uε)dx. (3.5)

Combining (3.2) and (3.4)-(3.5),

sup
t≥ 1

β

I
(
uε

(x
t

))
≤ sup

t≥0

[
t3−2s

2
‖uε‖2 − βt3

4

∫
R3

F (uε)dx

]

+ sup
t≥0

[
αt2(3−2s)

4

(∫
R3

|(−Δ)
s
2uε|2dx

)2

− βt3

4

∫
R3

F (uε)dx

]

≤ sup
t≥0

[
3[S(s)]

3
2s

4
t3−2s − B0β

1− 3
2s+

(3−2s)p0
4s t3

4

]

+ sup
t≥0

(
9α[S(s)]

3
s t2(3−2s)

16
− B0β

1− 3
2s+

(3−2s)p0
4s t3

4

)

=
s[S(s)]

3
2s

2

(
(3− 2s)[S(s)]

3
2s

B0β1− 3
2s+

(3−2s)p0
4s

) 3−2s
2s

+
3α(4s− 3)[S(s)]

3
s

16

(
3α(3− 2s)[S(s)]

3
s

2B0β1− 3
2s+

(3−2s)p0
4s

) 2(3−2s)
4s−3

. (3.6)

From (3.3) and (3.6), we derive there exists β0 > 0 such that supt≥0 I(uε(
x
t )) < c̃

for β > β0.
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Lemma 3.2. Let β > β0. If {un} ⊂ Hs
r (R

3) is a sequence such that I(un) → c
and (1 + ‖un‖)‖I ′(un)‖ → 0, then ‖un‖ is bounded.

Proof. Otherwise, we have ‖un‖ → ∞. Let vn = un

‖un‖ . Then vn ⇀ v weakly in

Hs
r (R

3) and vn(x) → v(x) a.e. x ∈ R
3.

Case 1. v(x) = 0 a.e. x ∈ R
3. Let θ ∈ (4, 2∗s). By (f1), for ε ∈(

0, 1
β

(
1
θ − 1

2∗s

))
, there exists Cε > 0 such that

∣∣∣∣1θ f(un)un − F (un)

∣∣∣∣ ≤ ε|un|2∗s + Cε|un|2.

Then(
I(un)− 1

θ
(I ′(un), un)

)
≥
(
1

2
− 1

θ

)
‖un‖2 − βCε

∫
R3

|un|2dx. (3.7)

From (3.7), we derive that

1

‖un‖2
(
I(un)− 1

θ
(I ′(un), un)

)
≥
(
1

2
− 1

θ

)
− βCε

∫
R3

|vn|2dx.

By
∫
R3 |vn|2dx → 0, I(un) → c, (I ′(un), un) → 0 and ‖un‖ → ∞, we get

0 ≥ ( 12 − 1
θ

)
, a contradiction.

Case 2. v(x) �= 0. Let Ω = {x ∈ R
N : v(x) �= 0}. Then the measure of Ω is

positive. For x ∈ Ω, by vn(x) =
un(x)
‖un‖ → v(x), we get limn→∞ un(x) = ∞. Let

q ∈ (4, 2∗s). By (f2) and Fatou’s Lemma,

lim
n→∞

∫
Ω

βF (un) +
1
2∗s
|un|2∗s

‖un‖q dx = +∞. (3.8)

By (f1), for ε ∈
(
0, 1

β2∗s

)
, there exists Cε > 0 such that F (un) ≤ ε|un|2∗s +

Cε|un|2. Then∫
R3\Ω

βF (un)dx+
1

2∗s

∫
R3\Ω

|un|2∗sdx ≥ −βCε

∫
R3\Ω

|un|2dx,

from which we get

lim
n→∞

∫
R3\Ω

βF (un) +
1
2∗s
|un|2∗s

‖un‖q dx ≥ 0. (3.9)

By (3.8)-(3.9), we derive that

lim
n→∞

∫
R3

βF (un) +
1
2∗s
|un|2∗s

‖un‖q dx = +∞. (3.10)
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On the other hand, we have

I(un) +

∫
R3

(
βF (un) +

1

2∗s
|un|2∗s

)
dx =

1

2
‖un‖2 + α

4

(∫
R3

|(−Δ)
s
2u|2dx

)2

.

So limn→∞
∫
R3

βF (un)+
1
2∗s

|un|2∗s
‖un‖q dx = 0, a contradiction with (3.10).

Lemma 3.3. Assume that {un} ⊂ Hs
r (R

3) is a sequence such that ‖un‖ is
bounded, I(un) → c ∈ (0, c̃) and I ′(un) → 0. Then {un} converges strongly in
Hs

r (R
3) up to a subsequence.

Proof. Since ‖un‖ is bounded, we assume un ⇀ u weakly in Hs
r (R

3). Let
A = limn→∞

∫
R3 |(−Δ)

s
2un|2dx. Define

Í(u) =
1

2
‖u‖2 + αA

4

∫
R3

|(−Δ)
s
2u|2dx− β

∫
R3

F (u)dx− λ

2∗s

∫
R3

|u|2∗sdx,

Ì(u) =
1

2
‖u‖2 + αA

2

∫
R3

|(−Δ)
s
2u|2dx− β

∫
R3

F (u)dx− λ

2∗s

∫
R3

|u|2∗sdx,

where u ∈ Hs
r (R

3). Then Í(un) → c and Ì ′(un) → 0. By un ⇀ u weakly in
Hs

r (R
3), we have Ì ′(u) = 0. By (f1) and Lemma 2.1, we derive that

lim
n→∞

∫
R3

F (un)dx =

∫
R3

F (u)dx, lim
n→∞

∫
R3

f(un)undx =

∫
R3

f(u)udx. (3.11)

Set vn = un − u. By the Brezis-Lieb Lemma in [33], we have

‖vn‖2 = ‖un‖2 − ‖u‖2 + on(1),∫
R3

|vn|2dx =

∫
R3

|un|2dx−
∫
R3

|u|2dx+ on(1),∫
R3

|vn|2∗sdx =

∫
R3

|un|2∗sdx−
∫
R3

|u|2∗sdx+ on(1). (3.12)

Then by Í(un)− Í(u) → c− Í(u) and
(
Ì ′(un), un

)
−
(
Ì ′(u), u

)
→ 0,

c− Í(u) =
1

2
‖vn‖2 + αA

4

∫
R3

|(−Δ)
s
2 vn|2dx− 1

2∗s

∫
R3

|vn|2∗sdx+ on(1),

on(1) = ‖vn‖2 + αA

∫
R3

|(−Δ)
s
2 vn|2dx−

∫
R3

|vn|2∗sdx. (3.13)

Assume that limn→∞
∫
R3 |vn|2∗sdx = l. By (3.12), we get

A ≥ lim
n→∞

∫
R3

|(−Δ)
s
2 vn|2dx.
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Then by (3.13) and S(s) ≤
∫
R3

|(−Δ)
s
2 vn|2dx

(
∫
R3

|vn|2∗s dx)
2
2∗s

,

lim
n→∞

∫
R3

|vn|2∗sdx ≥S(s)

(
lim
n→∞

∫
R3

|vn|2∗sdx
) 2

2∗s

+ α[S(s)]2
(

lim
n→∞

∫
R3

|vn|2∗sdx
) 4

2∗s
.

If l > 0 and

S(s)

(
lim

n→∞

∫
R3

|vn|2∗sdx
) 2

2∗s ≥ α[S(s)]2
(

lim
n→∞

∫
R3

|vn|2∗sdx
) 4

2∗s
,

then

lim
n→∞

∫
R3

|vn|2∗sdx ≥ 2α[S(s)]2
(

lim
n→∞

∫
R3

|vn|2∗sdx
) 4

2∗s
.

So l ≥ (2α[S(s)]2) 3
4s−3 . If l > 0 and

S(s)

(
lim

n→∞

∫
R3

|vn|2∗sdx
) 2

2∗s ≤ α[S(s)]2
(

lim
n→∞

∫
R3

|vn|2∗sdx
) 4

2∗s
,

then

lim
n→∞

∫
R3

|vn|2∗sdx ≥ 2S(s)

(
lim
n→∞

∫
R3

|vn|2∗sdx
) 2

2∗s
.

So l ≥ (2S(s))
3
2s . Thus,

l ≥ min
{(

2α[S(s)]2
) 3

4s−3 , (2S(s))
3
2s

}
,

from which we get

A ≥ lim
n→∞

∫
R3

|(−Δ)
s
2 vn|2dx

≥min
{
(2α)

3−2s
4s−3 [S(s)]

3
4s−3 , 2

3−2s
2s [S(s)]

3
2s

}
.

So by (3.13), we have

c− I(u) ≥s

3
lim

n→∞

∫
R3

|(−Δ)
s
2 vn|2dx

+
(4s− 3)α

12

(
lim

n→∞

∫
R3

|(−Δ)
s
2 vn|2dx

)2

≥ c̃.
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Since Ì ′(u) = 0, by Lemma 2.2,

3− 2s

2
(1 + αA)

∫
R3

|(−Δ)
s
2u|2dx = 3

∫
R3

(
βF (u) +

1

2∗s
|u|2∗s − 1

2
|u|2
)
dx.

Then Í(u) ≥ 0. Thus, we have c ≥ c̃, a contradiction. So l = 0. By (3.13), we
get vn → 0 in Hs

r (R
3).

Proof of Theorem 1.1. Let β > β0. By (f1), for ε = 1
4 , there exists Cε =

C 1
4
> 0 such that H(u) ≤ 1

4 |u|2 + C 1
4
|u|2∗s . Then by the Sobolev embedding

theorem,

I(u) ≥ 1

2
‖u‖2 − 1

4

∫
R3

|u|2dx− C 1
4

∫
R3

|u|2∗sdx ≥ 1

4
‖u‖2 −

C 1
4
‖u‖2∗s

[S(s)]
2∗s
2

.

So there exists ρ0, γ0 > 0 such that I(u) ≥ γ0 for ‖u‖ = ρ0. Let ε = 1

β
1
2s
. By

(3.2) and (3.5), we have

I
(
uε

(x
t

))
≤ t3−2s

2

∫
R3

|(−Δ)
s
2uε|2dx+

αt2(3−2s)

4

(∫
R3

|(−Δ)
s
2uε|2dx

)2

− βt3

2

∫
R3

F (uε)dx.

Then limt→+∞ I
(
uε

(
x
t

))
= −∞. We also have I(0) = 0. Let γ(t)(x) = uε(

x
t )

for t > 0 and γ(t)(x) = 0 for t = 0. By the direct calculation, we have

‖γ(t)‖2 = t3−2s

∫
R3

|(−Δ)
s
2uε|2dx+ t3

∫
R3

|uε|2dx.

Then γ(t) ∈ C([0,∞), Hs
r (R

3)). By Theorem 2.1 and Lemma 3.2, there ex-
ists a bounded sequence {un} ⊂ Hs

r (R
3) such that I(un) → c > 0 and (1 +

‖un‖)‖I ′(un)‖ → 0. Assume un ⇀ u0 weakly in Hs
r (R

3). By the definition of c
and Lemma 3.1, we get c < c̃. From Lemma 3.3, we know un → u0 in Hs

r (R
3).

So I(u0) = c ∈ [γ0, c̃) and I ′(u0) = 0.
Let

m = inf{I(u) : u ∈ Hs
r (R

3) \ {0} : I ′(u) = 0}.
Since I ′(u0) = 0, we get m ≤ I(u0) = c < c̃. By Lemma 2.2, we have m ≥ 0. So
0 ≤ m ≤ I(u0) < c̃. By the definition of m, there exists {un} ⊂ Hs

r (R
3) \ {0}

such that I(un) → m and I ′(un) = 0. Then by Lemma 2.2, for n large enough,

s

3

∫
R3

|(−Δ)
s
2un|2dx+

(4s− 3)α

12

(∫
R3

|(−Δ)
s
2un|2dx

)2

= I(un) ≤ 2m.

(3.14)
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By (f1), for ε = 1
2 , there exists Cε = C 1

2
> 0 such that |βf(un)un| ≤ 1

2 |un|2 +
C 1

2
|un|2∗s . Then by (I ′(un), un) = 0,

‖un‖2 + α

(∫
R3

|(−Δ)
s
2un|2dx

)2

≤ 1

2

∫
R3

|un|2dx+ (C 1
2
+ 1)

∫
R3

|un|2∗sdx.
(3.15)

From (3.14)-(3.15) and the Sobolev embedding theorem,

‖un‖2 ≤2(C 1
2
+ 1)

∫
R3

|un|2∗sdx

≤
2(C 1

2
+ 1)

S(s)
2∗s
2

(∫
R3

|(−Δ)
s
2un|2dx

) 2∗s
2

≤
2(C 1

2
+ 1)

S(s)
2∗s
2

(
6m

s

) 2∗s
2

.

Also, by (3.15),

S(s)

2

(∫
R3

|un|2∗sdx
) 2

2∗s ≤ ‖un‖2 − 1

2

∫
R3

|un|2dx ≤ (C 1
2
+ 1)

∫
R3

|un|2∗sdx,

from which we derive that
∫
R3 |un|2∗sdx ≥

[
S(s)

2(C 1
2
+1)

] 3
2s

. Assume that un ⇀ u

weakly in Hs
r (R

3). Similar to the proof of Lemma 3.3, we derive from I(un) →
m ∈ [0, c̃) and I ′(un) = 0 that un → u in Hs

r (R
3). Then I(u) = m and I ′(u) = 0

with u �= 0. So m is attained by u.
�

4 The Case s = 3
4

By s = 3
4 , we have 2∗s = 6

3−2s = 4. We first consider the case α < 1
[S(s)]2 .

Choose λ1 ∈ (0, 1) such that α[S(s)]4 < λ[S(s)]2 for λ ∈ [λ1, 1]. For λ ∈ [λ1, 1],
define

Jλ(u) =
1

2
‖u‖2 + α

4

(∫
R3

|(−Δ)
s
2u|2dx

)2

− λ

∫
R3

H(u)dx, u ∈ Hs
r (R

3). (4.1)

Lemma 4.1. Let {un} ⊂ Hs
r (R

3) be a sequence such that Jλn(un) <
[S(s)]2

4(λ−α[S(s)]2)

and J ′
λn

(un) = 0, where λn ∈ [λ1, 1]. Then there exists M0 > 0 independent of
n such that ‖un‖ ≤ M0.

Proof. By Lemma 2.2, we have(
1 + α

∫
R3

|(−Δ)
s
2un|2dx

)∫
R3

|(−Δ)
s
2un|2dx =

∫
R3

(
4λH(un)− 2|un|2

)
dx.

17



Then

1

4

∫
R3

|(−Δ)
s
2un|2dx = Jλn(un) <

[S(s)]2

4(λ− α[S(s)]2)
. (4.2)

By (f1), for ε = 1
2 , there exists Cε = C 1

2
> 0 such that |βf(un)un| ≤ 1

2 |un|2 +
C 1

2
|un|4. Then by

(
J ′
λn

(un), un

)
= 0,

‖un‖2 + α

(∫
R3

|(−Δ)
s
2un|2dx

)2

= λn

∫
R3

h(un)undx

≤ 1

2

∫
R3

|un|2dx+ (C 1
2
+ 1)

∫
R3

|un|4dx.
(4.3)

From (4.2)-(4.3),

‖un‖2 ≤2(C 1
2
+ 1)

∫
R3

|un|4dx

≤
2(C 1

2
+ 1)

[S(s)]2

(∫
R3

|(−Δ)
s
2un|2dx

)2

≤
2(C 1

2
+ 1)

[S(s)]2
[S(s)]4

(λ− α[S(s)]2)2
:= M0.

Lemma 4.2. There exists α0 > 0 such that for almost every λ ∈ [λ1, 1], there
exists a sequence {un} ⊂ Hs

r (R
3) satisfying ‖un‖ is bounded, Jλ(un) → cλ ≥ α0

and J ′
λ(un) → 0. Moreover, cλ < [S(s)]2

4(λ−α[S(s)]2) for any λ ∈ [λ1, 1] and the map

λ → cλ is continuous from the left.

Proof. Let J = [λ1, 1], A(u) = 1
2‖u‖2 + α

4

(∫
R3 |(−Δ)

s
2u|2dx)2 and B(u) =∫

R3 H(u)dx. Then B(u) ≥ 0 and A(u) → +∞ as ‖u‖ → ∞. By (f1), for

ε = 1
4β , there exists Cε = C 1

4β
> 0 such that |F (u)| ≤ 1

4β |u|2 + C 1
4β
|u|4. Then

Jλ(u) ≥ 1

2
‖u‖2 − 1

4

∫
R3

|u|2dx−
(
βC 1

4β
+

1

4

)∫
R3

|u|4dx

≥ 1

4
‖u‖2 −

βC 1
4β

+ 1
4

[S(s)]2
‖u‖4.

So there exists r0, α0 > 0 independent of λ such that Jλ(u) ≥ α0 for ‖u‖ = r0.
For λ ∈ [λ1, 1],

Jλ(tuε) ≤ t2

2
‖uε‖2 − t4

4

[
λ1

∫
R3

|uε|4dx− α

(∫
R3

|(−Δ)
s
2uε|2dx

)2
]
. (4.4)

18



Since α[S(s)]4 < λ[S(s)]2 for λ ∈ [λ1, 1], by (2.2)-(2.3), we derive that there
exists ε1 > 0 such that for ε ∈ (0, ε1),

‖uε‖2 ≤ 3[S(s)]2

2
,

λ1

∫
R3

|uε|4dx− α

(∫
R3

|(−Δ)
s
2uε|2dx

)2

≥ λ1[S(s)]
2 − α[S(s)]4

2
. (4.5)

From (4.4)-(4.5), we have limt→+∞ Jλ(tuε) = −∞. We also have Jλ(0) = 0.
By Theorem 2.2, for almost every λ ∈ [λ1, 1], there exists {un} ⊂ Hs

r (R
3) such

that ‖un‖ is bounded, Jλ(un) → cλ ≥ α0 and J ′
λ(un) → 0. Moreover, the map

λ → cλ is continuous from the left.

We claim cλ < [S(s)]2

4(λ−α[S(s)]2) for λ ∈ [λ1, 1]. By (4.4)-(4.5), there exists a

small t1 > 0 and a large t2 > 0 independent of ε and λ satisfying

sup
t∈[0,t1]∪[t2,+∞)

Jλ(tuε) <
[S(s)]2

4(λ− α[S(s)]2)
. (4.6)

Choose ε > 0 small such that μ[S(s)]
1
2s ε ≤ r. Then uε(x) ≥ κ0ε

− 3−2s
2

(2μ2)
3−2s

2

for

|x| ≤ μ[S(s)]
1
2s ε. By (f2), we derive that for ε > 0 small, F (tuε) ≥ D0t

p0
1 up0

ε

R
p0
0

≥
κ
p0
0 D0t

p0
1 ε−

p0(3−2s)
2

R
p0
0 (2μ2)

p0(3−2s)
2

for t ∈ [t1, t2] and |x| ≤ μ[S(s)]
1
2s ε. Thus,

inf
t∈[t1,t2]

∫
R3

F (tuε)dx ≥ inf
t∈[t1,t2]

∫
|x|≤μ[S(s)]

1
2s ε

F (tuε)dx

≥κp0

0 D0t
p0

1 ε−
p0(3−2s)

2

Rp0

0 (2μ2)
p0(3−2s)

2

∫
|x|≤μ[S(s)]

1
2s ε

dx

=
κp0

0 D0t
p0

1 [S(s)]
3
2s ε−

p0(3−2s)
2 +3

Rp0

0 2
p0(3−2s)

2 μp0(3−2s)−3

∫
|x|≤1

dx. (4.7)

Since s = 3
4 , by (2.2)-(2.3) and (4.7), we derive that for ε > 0 small,

sup
t∈[t1,t2]

Jλ(tuε)

≤ sup
t≥0

[
t2

2

∫
R3

|(−Δ)
s
2uε|2dx− t4

4

(
λ

∫
R3

|uε|4dx− α

(∫
R3

|(−Δ)
s
2uε|2dx

)2
)]

+
t22
2

∫
R3

|uε|2dx− βκp0

0 D0t
p0

1 [S(s)]
3
2s ε−

p0(3−2s)
2 +3

Rp0

0 2
p0(3−2s)

2 μp0(3−2s)−3

∫
|x|≤1

dx

=

(∫
R3 |(−Δ)

s
2uε|2dx

)2
4
(
λ
∫
R3 |uε|4dx− α

(∫
R3 |(−Δ)

s
2uε|2dx

)2) +O(ε
3
2 | log ε|)− C0ε

3− 3p0
4

≤ [S(s)]2

4(λ− α[S(s)]2)
+O(ε

3
2 | log ε|)− C0ε

3− 3p0
4 .
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By p0 ∈ (2, 4), we get 3− 3p0

4 < 3
2 , from which we derive that supt∈[t1,t2] Jλ(tuε) <

a2[S(s)]2

4(λ−b[S(s)]2) for ε > 0 small. Together with (4.6) and the definition of cλ, we

get cλ < [S(s)]2

4(λ−α[S(s)]2) .

Lemma 4.3. Let λ ∈ [λ1, 1]. Assume that {un} ⊂ Hs
r (R

3) is a sequence such

that ‖un‖ is bounded, Jλ(un) → cλ ∈
(
0, [S(s)]2

4(λ−α[S(s)]2)

)
and J ′

λ(un) → 0. Then

{un} converges strongly in Hs
r (R

3) up to a subsequence.

Proof. Assume un ⇀ uλ weakly inHs
r (R

3). LetA = limn→∞
∫
R3 |(−Δ)

s
2un|2dx.

Define

Ĵλ(u) =
1

2
‖u‖2 + αA

4

∫
R3

|(−Δ)
s
2u|2dx− λ

∫
R3

H(u)dx,

J̃λ(u) =
1

2
‖u‖2 + αA

2

∫
R3

|(−Δ)
s
2u|2dx− λ

∫
R3

H(u)dx, u ∈ Hs
r (R

3).

Then Ĵλ(un) → cλ and J̃ ′
λ(un) → 0. By un ⇀ uλ weakly in Hs

r (R
3), we have

J̃ ′
λ(uλ) = 0. By Lemma 2.1, we get

lim
n→∞

∫
R3

F (un)dx =

∫
R3

F (uλ)dx, lim
n→∞

∫
R3

f(un)undx =

∫
R3

f(uλ)uλdx.

(4.8)
Set vn = un − uλ. By the Brezis-Lieb Lemma in [33], we have

‖vn‖2 = ‖un‖2 − ‖uλ‖2 + on(1),∫
R3

|vn|2dx =

∫
R3

|un|2dx−
∫
R3

|uλ|2dx+ on(1),∫
R3

|vn|4dx =

∫
R3

|un|4dx−
∫
R3

|uλ|4dx+ on(1). (4.9)

Combining (4.8)-(4.9),

cλ − Ĵλ(uλ) = Ĵλ(un)− Ĵλ(uλ) + on(1)

=
1

2
‖vn‖2 + αA

4

∫
R3

|(−Δ)
s
2 vn|2dx− λ

4

∫
R3

|vn|4dx+ on(1).

(4.10)

Also,

on(1) =
(
J̃ ′
λ(un), un

)
−
(
J̃ ′
λ(uλ), uλ

)
+ on(1)

= ‖vn‖2 + αA

∫
R3

|(−Δ)
s
2 vn|2dx− λ

∫
R3

|vn|4dx+ on(1). (4.11)

Assume that limn→∞
∫
R3 |vn|4dx = l. We claim l = 0. Otherwise, we have

l > 0. By (4.9), we get A ≥ limn→∞
∫
R3 |(−Δ)

s
2 vn|2dx. Then by (4.11) and
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S(s) ≤
∫
R3

|(−Δ)
s
2 vn|2dx

(
∫
R3

|vn|4dx)
1
2

, we get

λ lim
n→∞

∫
R3

|vn|4dx ≥ S(s)

(
lim
n→∞

∫
R3

|vn|4dx
) 1

2

+ α[S(s)]2 lim
n→∞

∫
R3

|vn|4dx,

from which we derive that l ≥ [S(s)]2

(λ−α[S(s)]2)2 . So

lim
n→∞

∫
R3

|(−Δ)
s
2 vn|2dx ≥ [S(s)]2

λ− b[S(s)]2
.

Together with (4.10)-(4.11), we get

cλ − Ĵλ(uλ) ≥ 1

4
lim

n→∞

∫
R3

|(−Δ)
s
2 vn|2dx ≥ [S(s)]2

4(λ− α[S(s)]2)
. (4.12)

Since J̃ ′
λ(uλ) = 0, similar to Lemma 2.2, we have∫

R3

|(−Δ)
s
2uλ|2dx+ 2

∫
R3

|uλ|2dx+ αA

∫
R3

|(−Δ)
s
2uλ|2dx = 4λ

∫
R3

H(uλ)dx.

Then

Ĵλ(uλ) =Ĵλ(uλ)− 1

4

∫
R3

|(−Δ)
s
2uλ|2dx− 1

2

∫
R3

|uλ|2dx− αA

4

∫
R3

|(−Δ)
s
2uλ|2dx

+ λ

∫
R3

H(uλ)dx ≥ 0. (4.13)

By (4.12)-(4.13), we have cλ ≥ [S(s)]2

4(λ−α[S(s)]2) , a contradiction. So l = 0. By

(4.11), we get vn → 0 in Hs
r (R

3).

Proof of Theorem 1.2. By Lemma 4.2, for almost every λ ∈ [λ1, 1], there ex-

ists {un} ⊂ Hs
r (R

3) such that ‖un‖ is bounded, Jλ(un) → cλ ∈
[
α0,

[S(s)]2

4(λ−α[S(s)]2)

)
and J ′

λ(un) → 0. By Lemma 4.3, we have un → uλ in Hs
r (R

3). So Jλ(uλ) =

cλ ∈
[
α0,

[S(s)]2

4(λ−α[S(s)]2)

)
and J ′

λ(uλ) = 0. Thus, there exists {λn} ⊂ [λ1, 1]

and {uλn} ⊂ Hs
r (R

3) \ {0} satisfying λn → 1, J ′
λn

(uλn) = 0 and Jλn(uλn) =

cλn ∈
[
α0,

[S(s)]2

4(λn−α[S(s)]2)

)
. From Lemma 4.2, we have limn→∞ cλn = c1 ∈[

α0,
[S(s)]2

4(1−α[S(s)]2)

)
. Since I(uλn) = Jλn(uλn)+(λn−1)

∫
R3 H(uλn)dx, by Lemma

4.1, we derive that I(uλn) → c1 ∈
[
α0,

[S(s)]2

4(1−α[S(s)]2)

)
and I ′(uλn) → 0. By

Lemma 4.3, we get uλn → v0 in Hs
r (R

3). So I(v0) = c1 > 0 and I ′(v0) = 0. Let

m = inf{I(u) : u ∈ Hs
r (R

3) \ {0} : I ′(u) = 0}.
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From I ′(v0) = 0 and Lemma 2.2, we have 0 ≤ m ≤ I(v0) < [S(s)]2

4(1−α[S(s)]2) . By

the definition of m, there exists {un} ⊂ Hs
r (R

3) \ {0} such that I(un) → m and
I ′(un) = 0. Since I ′(un) = 0, by the standard argument, we derive that there
exists �0 > 0 such that

∫
R3 |un|4dx ≥ �0 > 0. By Lemma 4.1 and the argument

of Lemma 4.3, we get un → u in Hs
r (R

3). Then I(u) = m and I ′(u) = 0 with
u �= 0. So m is attained by u.

�

Now we consider the case α > 1
[S(s)]2 . By S(s) ≤

∫
R3

|(−Δ)
s
2 u|2dx

(
∫
R3

|u|4dx)
1
2

, we have

α

(∫
R3

|(−Δ)
s
2u|2dx

)2

−
∫
R3

|u|4dx ≥
(
α− 1

[S(s)]2

)(∫
R3

|(−Δ)
s
2u|2dx

)2

.

(4.14)

We prove Theorem 1.3 (i). For λ ∈ [ 12 , 1], define

Iλ(u) =
1

2
‖u‖2 + α

4

(∫
R3

|(−Δ)
s
2u|2dx

)2

− 1

4

∫
R3

|u|4dx− λβ

∫
R3

F (u)dx,

(4.15)
where u ∈ Hs

r (R
3).

Lemma 4.4. Let λ ∈ [ 12 , 1]. Assume that {un} ⊂ Hs
r (R

3) is a sequence such
that ‖un‖ is bounded, Iλ(un) → cλ and I ′λ(un) → 0. Then {un} converges
strongly in Hs

r (R
3) up to a subsequence.

Proof. Assume un ⇀ uλ weakly inHs
r (R

3). Let Â = limn→∞
∫
R3 |(−Δ)

s
2un|2dx.

Define

Ĩλ(u) =
1

2
‖u‖2 + αÂ

2

∫
R3

|(−Δ)
s
2u|2dx− 1

4

∫
R3

|u|4dx− λβ

∫
R3

F (u)dx,

where u ∈ Hs
r (R

3). Then Ĩ ′λ(un) → 0. By un ⇀ uλ weakly in Hs
r (R

3), we have

Ĩ ′λ(uλ) = 0. Set vn = un − uλ. By (4.8)-(4.9), we have

on(1) =
(
Ĩ ′λ(un), un

)
−
(
Ĩ ′λ(uλ), uλ

)
+ on(1)

= ‖vn‖2 + αÂ

∫
R3

|(−Δ)
s
2 vn|2dx−

∫
R3

|vn|4dx+ on(1). (4.16)

We also have Â ≥ limn→∞
∫
R3 |(−Δ)

s
2 vn|2dx. Then by (4.14), (4.16) and α >

1
[S(s)]2 , we get

0 ≥ lim
n→∞ ‖vn‖2 + α lim

n→∞

(∫
R3

|(−Δ)
s
2 vn|2dx

)2

− lim
n→∞

∫
R3

|vn|4dx

≥ lim
n→∞ ‖vn‖2 +

(
α− 1

[S(s)]2

)
lim

n→∞

(∫
R3

|(−Δ)
s
2 vn|2dx

)2

≥ lim
n→∞ ‖vn‖2.

So un → uλ in Hs
r (R

3).
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Lemma 4.5. There exists β1, ĉ > 0 such that for β > β1 and almost every λ ∈
[ 12 , 1], there is a sequence {un} ⊂ Hs

r (R
3) satisfying ‖un‖ is bounded, Iλ(un) →

cλ ≥ ĉ and I ′λ(un) → 0. Moreover, the map λ → cλ is continuous from the left.

Proof. Let J = [ 12 , 1], A(u) = 1
2‖u‖2 + α

4

(∫
R3 |(−Δ)

s
2u|2dx)2 − 1

4

∫
R3 |u|4dx,

B(u) = β
∫
R3 F (u)dx. Then B(u) ≥ 0 and A(u) → +∞ as ‖u‖ → ∞ in view

of (4.14). For R > 0, define w(x) = ξ for |x| ≤ R, w(x) = 0 for |x| ≥ R + 1
and w(x) = ξ(R + 1 − |x|) for R ≤ |x| ≤ R + 1. Then w ∈ Hs

r (R
3). Moreover,

by choosing R > 0 large, we can derive that
∫
R3 F (w)dx > 0. Thus, there

exists β1 > 0 such that Iλ(w) ≤ I 1
2
(w) < 0 for β > β1. Let β > β1. By (f1),

there exists C 1
4β

> 0 such that |F (u)| ≤ 1
4β |u|2 +C 1

4β
|u|4. Then by the Sobolev

embedding theorem, we obtain that for λ ∈ [ 12 , 1],

Iλ(u) ≥ 1

2
‖u‖2 − 1

4

∫
R3

|u|2dx−
(
βC 1

4β
+

1

4

)∫
R3

|u|4dx

≥ 1

4
‖u‖2 −

βC 1
4β

+ 1
4

[S(s)]2
‖u‖4.

Let

ρ0 = min

⎧⎪⎨
⎪⎩

S(s)[
8
(
βC 1

4β
+ 1

4

)] 1
2

,
1

2
‖w‖

⎫⎪⎬
⎪⎭ .

Then Iλ(u) ≥ 1
8‖u‖2 = 1

8ρ
2
0 := ĉ for ‖u‖ = ρ0. Since Iλ(0) = 0 and Iλ(w) < 0,

by Theorem 2.2, for almost every λ ∈ [ 12 , 1], there is {un} ⊂ Hs
r (R

3) such that
‖un‖ is bounded, Iλ(un) → cλ ≥ ĉ and I ′λ(un) → 0. Moreover, the map λ → cλ
is continuous from the left.

Proof of Theorem 1.3 (i). Let β > β1. By Lemma 4.5, for almost every λ ∈[
1
2 , 1
]
, there is {un} ⊂ Hs

r (R
3) such that ‖un‖ is bounded, Iλ(un) → cλ ≥ ĉ > 0

and I ′λ(un) → 0. By Lemma 4.4, we get un → uλ inHs
r (R

3). So Iλ(uλ) = cλ > 0
and I ′λ(uλ) = 0. Then there exists λn ∈ [ 12 , 1] and {uλn} ⊂ Hs

r (R
3) \ {0} such

that λn → 1, I ′λn
(uλn) = 0 and Iλn(uλn) = cλn ≥ ĉ. By Lemma 4.5, we

have cλn → c1 ≥ ĉ. Then there exists c̆ > 0 such that cλn ≤ c̆. Similar to
the argument of Lemma 4.1, we derive that ‖un‖ is bounded. By I(uλn) =
Iλn(uλn) + β(λn − 1)

∫
R3 F (uλn)dx, we get I(uλn) → c1 ≥ ĉ and I ′(uλn) → 0.

By Lemma 4.4, we have uλn → w in Hs
r (R

3). So I(w) = c1 > 0 and I ′(w) = 0.
Let

m = inf{I(u) : u ∈ Hs
r (R

3) \ {0} : I ′(u) = 0}.
Similar to the argument of Theorem 1.2, we can derive that m is attained. We
omit the proof here.

�

Now we prove Theorem 1.3 (ii).
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Proof of Theorem 1.3 (ii). Assume that (1.1) has a solution u. Then
(I ′(u), u) = 0. Since α > 1

S(s)2 , by (4.14),

‖u‖2 +
(
α− 1

S(s)2

)(∫
R3

|(−Δ)
s
2u|2dx

)2

≤ β

∫
R3

f(u)udx. (4.17)

By (f ′
1), for ε =

1
2 , there exists Cε = C 1

2
> 0 such that |f(u)u| ≤ 1

2 |u|2+C 1
2
|u|4.

Then by S(s) ≤
∫
R3

|(−Δ)
s
2 u|2dx( ∫

R3
|u|4dx

) 1
2

, we derive that for β ∈ (0, 1),

‖u‖2 +
(
α− 1

[S(s)]2

)(∫
R3

|(−Δ)
s
2u|2dx

)2

≤ 1

2

∫
R3

|u|2dx+
C 1

2
β

[S(s)]2

(∫
R3

|(−Δ)
s
2u|2dx

)2

.

So

1

2
‖u‖2 +

(
α− 1

[S(s)]2
−

C 1
2
β

[S(s)]2

)(∫
R3

|(−Δ)
s
2u|2dx

)2

≤ 0.

Thus, if 0 < β < β2 ∈
(
0,min

{
1, α[S(s)]2−1

C 1
2

, β1

})
, we get ‖u‖ = 0, that is,

u = 0.
�

5 The Case s ∈ (0, 34)

Proof of Theorem 1.4. Assume that (1.1) has a solution u. Then (I ′(u), u) =

0. Since α > 2s(3−4s)
3−4s
2s

[S(s)]
3
2s (3−2s)

3−2s
2s

, we can choose δ ∈ (0, 1) small such that

α >
2s(3− 4s)

3−4s
2s

(1− δ)
3−4s
2s [S(s)]

3
2s (3− 2s)

3−2s
2s

.

Note that

(∫
R3

|(−Δ)
s
2u|2dx

) 2∗s
2

=

(
(1− δ)[S(s)]

2∗s
2

) 3−4s
3−2s

(
3− 2s

3− 4s

) 3−4s
3−2s

(∫
R3

|(−Δ)
s
2u|2dx

) 3−4s
3−2s

×
(

1

(1− δ)[S(s)]
2∗s
2

) 3−4s
3−2s (

3− 4s

3− 2s

) 3−4s
3−2s

(∫
R3

|(−Δ)
s
2u|2dx

) 4s
3−2s

.
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By the Young’s inequality,

(∫
R3

|(−Δ)
s
2u|2dx

) 2∗s
2

≤ 3− 4s

3− 2s
(1− δ)[S(s)]

2∗s
2
3− 2s

3− 4s

∫
R3

|(−Δ)
s
2u|2dx

+
2s

3− 2s

(
1

(1− δ)[S(s)]
2∗s
2

) 3−4s
2s (

3− 4s

3− 2s

) 3−4s
2s
(∫

R3

|(−Δ)
s
2u|2dx

)2

.

Then

∫
R3

|u|2∗sdx ≤ 1

[S(s)]
2∗s
2

(∫
R3

|(−Δ)
s
2u|2dx

) 2∗s
2

≤ (1− δ)

∫
R3

|(−Δ)
s
2u|2dx

+
2s(3− 4s)

3−4s
2s

(1− δ)
3−4s
2s [S(s)]

3
2s (3− 2s)

3−2s
2s

(∫
R3

|(−Δ)
s
2u|2dx

)2

. (5.1)

Since (I ′(u), u) = 0, by (5.1), we get

‖u‖2 + α

(∫
R3

|(−Δ)
s
2u|2dx

)2

≤ β

∫
R3

f(u)udx+ (1− δ)

∫
R3

|(−Δ)
s
2u|2dx

+
2s(3− 4s)

3−4s
2s

(1− δ)
3−4s
2s [S(s)]

3
2s (3− 2s)

3−2s
2s

(∫
R3

|(−Δ)
s
2u|2dx

)2

. (5.2)

By (f ′
1), for ε =

1
2 , there exists Cε = C 1

2
> 0 such that |f(u)u| ≤ 1

2 |u|2+C 1
2
|u|2∗s .

Together with (5.1)-(5.2), we derive that for β ∈ (0, 1),

δ

∫
R3

|(−Δ)
s
2u|2dx+

1

2

∫
R3

|u|2dx

+

(
α− 2s(3− 4s)

3−4s
2s

(1− δ)
3−4s
2s [S(s)]

3
2s (3− 2s)

3−2s
2s

)(∫
R3

|(−Δ)
s
2u|2dx

)2

≤ βC 1
2
(1− δ)

∫
R3

|(−Δ)
s
2u|2dx

+ βC 1
2

2s(3− 4s)
3−4s
2s

(1− δ)
3−4s
2s [S(s)]

3
2s (3− 2s)

3−2s
2s

(∫
R3

|(−Δ)
s
2u|2dx

)2

.
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Let

β3 ∈

⎛
⎜⎜⎜⎝0,min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1,

δ

(1− δ)C 1
2

,

α− 2s(3−4s)
3−4s
2s

(1−δ)
3−4s
2s [S(s)]

3
2s (3−2s)

3−2s
2s

2s(3−4s)
3−4s
2s C 1

2

(1−δ)
3−4s
2s [S(s)]

3
2s (3−2s)

3−2s
2s

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎞
⎟⎟⎟⎠ .

Then for β ∈ (0, β3), we have

[
δ − βC 1

2
(1− δ)

] ∫
R3

|(−Δ)
s
2u|2dx+

1

2

∫
R3

|u|2dx ≤ 0.

So ‖u‖ = 0, that is, u = 0.
�

6 The Case α = 0

Let

J(u) =
1

2
‖u‖2 − β

∫
R3

F (u)dx− 1

2∗s

∫
R3

|u|2∗sdx, u ∈ Hs
r (R

3). (6.1)

Then critical points of J are weak solutions of (1.5).

Lemma 6.1. Assume that {un} ⊂ Hs
r (R

3) is a sequence such that ‖un‖ is

bounded, J(un) → c ∈
(
0, s

3 [S(s)]
3
2s

)
and J ′(un) → 0. Then un ⇀ u �= 0

weakly in Hs
r (R

3).

Proof. Otherwise, un ⇀ 0 weakly in Hs
r (R

3). By (f1) and Lemma 2.1, we
have

∫
R3 F (un)dx =

∫
R3 f(un)undx = on(1). Then c + on(1) = 1

2‖un‖2 −
1
2∗s

∫
R3 |un|2∗sdx and on(1) = ‖un‖2 −

∫
R3 |un|2∗sdx. Since c > 0, we assume that

‖un‖2 → l. By the definition of S(s), we get l ≥ [S(s)]
3
2s . Then c ≥ s

3 [S(s)]
3
2s ,

a contradiction. So un ⇀ u �= 0 weakly in Hs
r (R

3).

Proof of Theorem 1.5. Similar to the argument of Theorem 1.1, we derive
that there exists a sequence {un} ⊂ Hs

r (R
3) such that J(un) → c > 0 and

(1 + ‖un‖)‖J ′(un)‖ → 0. By the definition of c, we have c ≤ supt≥0 J(tuε). By

(f2), we have J(tuε) ≤ t2

2 ‖uε‖2− t2
∗
s

2∗s

∫
R3 |uε|2∗sdx. From (2.2)-(2.3), there exists

ε′ > 0 such that ‖uε‖2 ≤ 3[S(s)]2

2 and
∫
R3 |uε|2∗sdx ≥ [S(s)]2

2 for ε ∈ (0, ε′). So
there exists a small t′ > 0 and a large t′′ > 0 independent of ε ∈ (0, ε′) such

that supt∈[0,t′]∪[t′′,+∞) J(tuε) <
s
3 [S(s)]

3
2s . Similar to (4.7), we have

inf
t∈[t′,t′′]

∫
R3

F (tuε)dx ≥ κp0

0 D0(t
′)p0 [S(s)]

3
2s ε−

p0(3−2s)
2 +3

Rp0

0 2
p0(3−2s)

2 μp0(3−2s)−3

∫
|x|≤1

dx. (6.2)
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Combining (2.2)-(2.3) and (6.2), we derive that for ε > 0 small,

sup
t∈[t′,t′′]

J(tuε)

≤ sup
t≥0

[
t2

2

∫
R3

|(−Δ)
s
2uε|2dx− t2

∗
s

2∗s

∫
R3

|uε|2∗sdx
]
+

(t′′)2

2

∫
R3

|uε|2dx

− βκp0

0 D0(t
′)p0 [S(s)]

3
2s ε−

p0(3−2s)
2 +3

Rp0

0 2
p0(3−2s)

2 μp0(3−2s)−3

∫
|x|≤1

dx

=
s

3

⎡
⎣∫R3 |(−Δ)

s
2uε|2dx(∫

R3 |uε|2∗sdx
) 2

2∗s

⎤
⎦

2∗s
2∗s−2

− C ′ε−
p0(3−2s)

2 +3 +

⎧⎪⎨
⎪⎩
O(ε2s), s ∈ (0, 3

4 )

O(ε2s| log ε|), s = 3
4

O(ε3−2s), s ∈ ( 34 , 1)

≤ s

3
[S(s)]

3
2s +O(ε3−2s)− C ′ε−

p0(3−2s)
2 +3 +

⎧⎪⎨
⎪⎩
O(ε2s), s ∈ (0, 3

4 )

O(ε2s| log ε|), s = 3
4

O(ε3−2s), s ∈ ( 34 , 1)

.

If s ∈ (0, 3
4 ], by p0 ∈ (2, 2∗s), we get −p0(3−2s)

2 + 3 < 2s. Then for ε > 0 small,

sup
t∈[t′,t′′]

J(tuε) ≤ s

3
[S(s)]

3
2s +O(ε2s| log ε|)− C ′ε−

p0(3−2s)
2 +3 <

s

3
[S(s)]

3
2s .

If s ∈ ( 34 , 1), by p0 ∈ (2∗s − 2, 2∗s), we get −p0(3−2s)
2 +3 < 3− 2s. Then for ε > 0

small,

sup
t∈[t′,t′′]

J(tuε) ≤ s

3
[S(s)]

3
2s +O(ε3−2s)− C ′ε−

p0(3−2s)
2 +3 <

s

3
[S(s)]

3
2s .

Recall that supt∈[0,t′]∪[t′′,+∞) J(tuε) < s
3 [S(s)]

3
2s . So c < s

3 [S(s)]
3
2s . Let θ,

q ∈ (2, 2∗s) in Lemma 3.2, we can prove that ‖un‖ bounded. By Lemma 6.1, we
have un ⇀ u �= 0 weakly in Hs

r (R
3). So J ′(u) = 0.

�
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